PRELIMINARY STORMWATER POLLUTION PREVENTION PLAN

This Stormwater Pollution Prevention Plan (SWPPP) has been prepared in accordance with the requirements for obtaining coverage under the New York State Department of Conservation (NYSDEC) General Permit for Stormwater Discharges from Contruction Activities (GP-0-20-001) for the proposed project:

NEW BILLS STADIUM

1 Bills Drive, Town of Orchard Park Erie County, New York

SWPPP Original Date: July 31, 2022

SWPPP Revision Date: September 30, 2022

SWPPP Version: PRELIMINARY, for SEQR Review

(Current SWPPP version is not suitable for use in construction or obtaining Permit coverage)

Prepared For:

LaBella Associates 300 State Street, Suite 201 Rochester, New York 14614 SWPPP Preparer:

Pinewoods Engineering, PC 42 Aston Villa North Chili, New York 14514

Table of Contents

II.	Contact Information / Responsible Parties 1
III.	SWPPP Purpose
IV.	Project Background Information 3
V.	General Permit Applicability & Coverage Commencement
VI.	Applicable Design Standards
VII.	Contractor Requirements for SWPPP Documentation7
VIII.	Contractor Requirements for General SWPPP Implementation
IX.	Erosion and Sediment Control and Pollution Prevention Standards
X.	Spill Prevention and Reporting 10
XI.	Project Soils 11
XII.	Temporary BMPs to be Used During Construction 12
XIII.	Construction Phasing
XIV.	Site Planning and Design
XV.	Existing Drainage Conditions
XVI.	Proposed Drainage Conditions
XVII.	Existing and Proposed Condition Stormwater Modeling
XVIII	. Post-Construction Stormwater Management Performance and Sizing
XIX.	Intermediate Phase Drainage Conditions

Appendices

APPENDIX A

-Figure #1 - U.S.G.S. Location Map

-Figure #2 - NYSDEC Environmental Resource Map

-Figure #3 - SHPO Map

-Figure #4 - NFHL FIRMette

-Figure DR-1.0 - Existing Conditions Drainage Area Map

-Figure DR-2.0 - Proposed Conditions Drainage Area Map

-CIVIL Conceptual Stormwater Plan

APPENDIX B

-Contractor Identification Form
-Proof of Trained Contractor Training*
-Notice of Intent - DRAFT FORM
-Owner's & SWPPP Preparer's Certification - DRAFT FORM
-MS4 Acceptance Form - DRAFT FORM
-5-Ac Waiver Letter - DRAFT FORM
-SHPO 'No Impact' Letter*
-NYSDEC Acknowledgement Letter of Receipt of Notice of Intent*

APPENDIX C

-Notice of Termination*

-Post-Construction Stormwater Management Maintenance Agreement*

APPENDIX D

-Limits of Disturbance Calculations

-RRv and WQv Calculations

-NYSDEC GI Worksheet (Bioretention Only)

-Channel Protection Volume Calculations

-NOI Questions

-Existing & Proposed Conditions Stormwater Modeling Reports

-Cornell Extreme Precipitation Data Study 24-Hr Rainfall Amounts

-Storm Sewer Design Calculations*

-Cornell Extreme Precipitation Data Study IDF

-Sediment Trap Sizing Calculations*

APPENDIX E

-General Permit GP-0-20-001 - WILL BE PROVIDED WITH FINAL VERSION

APPENDIX F

-Post-Construction Stormwater Management Facilities Operation & Maintenance Manual

APPENDIX G

-NRCS Soil Report

-Applicable Pages from Geotechnical Investigation

APPENDIX H

-Qualified SWPPP Inspection Reports*

-SWPPP Related Reports and Correspondences Developed During Construction*

*To be included at a later date when applicable and/or available

Project Site Information

Project Site Name:	New Bills Stadium			
Project Location:	Town of Orchard Park and Town of Hamburg (SBLs: 161.00-5-3.1, 161.00-5-1, 161.00-5-16.1, 161.17-6-1, 161.17-6-3, 161.17-6-4.2 & 161.17-6-10)			
City. State Zip:	Orchard Park, New Yor	k 14127		
County:	Erie			
Permitted Limits of Disturbance:		184.00 Acres		
NYSDEC Permit Identification Number*:		To Be Determined/Assigned		
Notice of Intent Submittal Date to NYSDEC:		To Be Determined/Submitted		

*This is a unique identifying number assigned to your project by the NYSDEC after the Notice of Intent is received.

II. Contact Information / Responsible Parties

Owner/Operator (Permit Coverage Holder)				
Entity Name:	Buffalo Bills			
Contact:	Kathryn D'Angelo, Assistant General Counsel			
Address:	One Bills Drive, Orchard Park, New York 14127			
Phone Number:	(716) 312 - 8607			
E-mail: Kathryn.d'angelo@bills.nfl.net				

	Owner's Site Manager
Entity Name:	To Be Determined
Contact:	
Address:	
Phone Number:	
E-mail:	

SWPPP Preparer				
Entity Name:	Pinewoods Engineering, P.C.			
Contact:	Sara Gilbert, P.E.			
Address:	42 Aston Villa, North Chili, New York 14514			
Phone Number:	(585) 261 – 7852			
E-mail:	sgilbert@pinewoodseng.com			

Regulatory Reviewer (MS4 Authority)				
Entity Name:				
Contact:				
Address:				
Phone Number:				
E-mail:				

Qualified Inspector		
Entity Name:		
Contact:		
Address:		
Phone Number:		
E-mail:		

*To be completed once assigned

Site Contractor*				
Entity Name:				
Contact:				
Address:				
Phone Number:				
Emergency Phone:				
E-mail:				

*All contractors and subcontractors that will be responsible for installing, constructing, repairing, replacing, inspecting and maintaining the erosion and sediment control practices or constructing the post-construction stormwater management practices **must complete the Contractor Identification and Certification in Appendix B**.

Other Important Contacts: National Spill Response Center: 800-424-8802 NYSDEC Regional Stormwater Office:

III. SWPPP Purpose

This SWPPP has been developed to demonstrate compliance of the preliminary stormwater management mitigation measures designed for the project with Part II.B.2.c. of the New York State Department of Environmental Conservation (NYSDEC) SPDES General Permit for Stormwater Discharges from Construction Activity (GP-0-20-001 having an effective date of January 29, 2020 and an expiration date of January 28, 2025 [herein referred to as "Permit"]. Appendix E contains the Permit. Development of a SWPPP is ultimately a requirement for authorization to discharge under this Permit; however, the current SWPPP version was developed for the purposes of supporting the responses provided on the New York State Environmental Quality Review Act (SEQR) Environmental Assessment Form.

The purpose of this SWPPP is to document the selection, design, installation, implementation and maintenance of the erosion and sediment control measures and practices that will be used to meet the effluent limitations in Part I.B. of the Permit and the post-construction requirements in Part I.C. of the Permit. These effluent limitations are imposed to protect the waters of the State of New York from the adverse impacts of stormwater runoff.

IV. Project Background Information

A. <u>Project Description</u>

The proposed stadium is located on the west side of Abbott Road in the Town of Orchard Park, Erie County, New York and consists of several existing and proposed parking areas and internal roads. Several new parking areas, roads, sidewalks, etc. are located on the west side of Abbott Road. The existing stadium and several existing parking areas and roads are located on the east side of Abbott Roads. The existing stadium will be demolished and replaced with new parking areas. The majority of the existing parking areas will remain.

The project will enhance the existing driveway access to Big Tree Road (NYS Rt. 20A) that is currently part of Erie College Drive. A new driveway entrance is proposed to Southwestern Boulevard (NYS Rt. 20). Existing access points to Abbott Road will also be maintained.

The project is proposed to be phased with construction of the stadium and parking facilities on the west side of Abbott Road occurring first, followed by demolition of the existing stadium and establishment of parking areas on the east side of Abbott Road following in a subsequent phase.

B. Project Location

The project site is approximately 242.54 acres and consists of lands currently owned by Erie County, some of which are associated with the current stadium and some of which are associated with the SUNY Erie Community College South Campus. The site area is south of Southwestern Boulevard (NYS Rt 20) and north of Big Tree Road (NYS Rt 20A) approximately 2,500-ft west of their intersection and west of the South Branch of Smoke Creek. The parcels are mainly located in the Towns of Orchard Park and Hamburg.

The site addresses are: 1 Bills Drive
Orchard Park, NY 14127and4041 Southwestern Boulevard
Orchard Park, NY 14127

C. Project Type

The project includes the following construction activities: 'Sports Complexes', 'Road Construction', 'Parking Lot Construction or Reconstruction', 'Athletic fields (natural grass)' and 'Sidewalk, bike path or walking path that is part of a reconstruction project'. These activities are required to consider both erosion and sediment control measures and post-construction stormwater management. The entire project involves only stormwater and authorized non-stormwater discharges as allowed in the General Permit. The project's construction and/or post-construction operations are not required to obtain an individual SPDES permit or another SPDES general permit.

D. Project Size

The total limits of disturbance associated with the proposed project is 181.20 acres and contains 43.66-acres of new impervious area. The project will be phased and the SWPPP accounts for the overall common plan of development related to the new stadium and associated amenity construction and the existing stadium demolition and conversion to parking area.

E. <u>Watershed</u>

The project has three (3) waterbodies that receive runoff from the project. The first waterbody is an unnamed tributary of Rush Creek located at the south end of the site. This tributary conveys flows in a westerly direction through Rush Creek. The second waterbody is the South Branch of Smokes Creek located east of the project. This off-site creek conveys flows in a north-westerly direction. Both creeks are located within the Lake Erie watershed. The third waterbody is Rush Creek located offsite to the west. This creek flows in a northwesterly direction to Lake Erie. According to the NYSDEC Environmental Resource Mapper, all of these Creeks are designated as Class C streams indicating that they are best used for fishing. Appendix E of the General Permit states that all of the receiving waterbodies are considered 303D impaired waterbodies. Rush Creek has both silt/sediment and nutrients as a pollutant of concern. The receiving waterbodies are not associated with class AA watersheds, watershed improvement strategy, TMDL or enhanced phosphorus removal program.

F. Site Map

Construction drawing for the project entitled "Buffalo Bills Stadium" have been prepared by Labella Associates, Watts Architecture & Engineering, and Pinewoods Engineering. These plans contain the following features required by the Permit: a general location map, total site area, all improvements, areas of disturbance, areas that will not be disturbed, existing vegetation, on-site and adjacent off-site surface waters floodplain/floodway boundaries, wetlands and drainage patterns, existing and final contours, locations of different soil types with boundaries, material, waste, borrow or equipment storage areas and locations of stormwater discharges.

G. Development Classification

The overall classification of this project used on the Notice of Intent (NOI) is 'Redevelopment with an Increase in Impervious Area' because it consists of a combination of new development and redevelopment areas. Under existing conditions, the project area contains impervious surfaces which will be redeveloped along with new impervious surfaces which will be constructed over existing pervious surfaces. Areas of new impervious surface over existing pervious surfaces are considered 'New Development' areas and remaining areas are considered redevelopment.

Impervious surfaces include all materials or structures on or above the ground surface which prevent water from infiltrating in to the underlying soils. This includes the following surfaces: paved, gravel, driveways, sidewalks, roof tops, sheds and patios.

The new development portions of the project and the redevelopment portions which have runoff directed to existing stormwater management practices which complies with the current version of the Stormwater Management Design Manual (SMDM) have been designed to comply with the following chapters of the SMDM:

- Chapter 4 Unified Stormwater Sizing Criteria
- Chapter 5 Green Infrastructure Practices
- Chapter 6 Performance Criteria

The redevelopment portions of the project which do not have runoff directed to existing stormwater management practices that comply with the current version of the SMDM are eligible to have the requirements of Chapter 9 – Redevelopment Activity, of the SMDM applied because:

- The project is not located in a critical environmental area
- Redevelopment portions of the project are not being treated by an existing stormwater management practice that generally meets the criteria of one of the practices listed in the SMDM.
- The existing site contains soils with a relatively high groundwater that are not suitable for infiltration.

Table I lists the portions of the project area and impervious area that have been classified as 'New Development' and 'Redevelopment'.

Discharge Point	#1: Rush Cr	eek Tributary	#2: South Branch Smokes Creek	
Classification:	Project Area Impervious (Ac) Area (Ac)		Project Area (Ac)	Impervious Area (Ac)
New Development	16.00	15.94	17.00	16.62
Redevelopment	54.00	22.97	97.00	59.70
Total	70.00	38.91	114.00	76.32

<u> Table I – Project Classification</u>
--

Discharge Point (DP)	Classification	New Development (Ac)	Redevelopment (w/ Exist. Strmwtr Mngmt) (Ac)	Redevelopment (W/Out Exist. Strmwtr Mngmt) (Ac)	Total (Ac)
DP #1: Rush	Project Area	16.00	-	36.77	52.77
Creek Trib.	Impervious Area	16.00	-	17.47	33.47
DP #2: Smokes	Project Area	5.00	-	79.77	84.77
Creek	Impervious Area	1.37	-	73.71	75.08
DP #3: Rush	Project Area	13.00	30.66	-	43.66
Creek	Impervious Area	12.75	9.59	-	22.34
Total	Project Area	34.00	30.66	116.54	181.20
Total	Impervious Area	30.12	9.59	91.18	130.89

V. General Permit Applicability & Coverage Commencement

A. <u>Permit Coverage Applicability</u>

This project is required to obtain coverage under the NYSDEC General Permit because it will have stormwater discharges to surface waters of the state from construction activities involving soil disturbances of one (1) or more acres, and it meets the following eligible criteria for Permit coverage;

- Work does not involve routine maintenance activity
- Construction activities described in this SWPPP have not yet commenced
- Discharges will not be mixed with non-stormwater/non-allowed sources
- The project is not required to obtain an individual SPDES Permit
- The project will not adversely affect endangered or threatened species (Refer to Section XIV.A)
- Discharge will not cause or contribute to a violation of water quality standards
- Discharge is not tributary to a state waterbody classified as AA or AA-s
- The project will not adversely affect a historic property. (Refer to Section XIV.B)

Additionally, this construction activity requires post-construction stormwater management practices because it meets the criteria of Table 2 in Appendix B of the Permit.

B. <u>Authorization to Discharge</u>

Construction soil disturbing activities may commence with associated stormwater discharges, and non-stormwater discharge as allowed in Part I.E.3, when all of the following criteria are met:

It is on or after the date of <u>(date)</u>.

[This date is five (5) business days from the date a completed electronic version of the NOI was submitted to the NYSDEC. The completed electronic NOI included a signed MS4 Acceptance Form indicating Erie County, acting as lead agency, completed a satisfactory review pursuant to the State Environmental Quality Review Act (SEQR).]

The following Permits are obtained: <u>(To Be Determined)</u>.

[Other Permit requirements to be verified]

VI. Applicable Design Standards

A. Erosion and Sedimentation Control Standards

The erosion and sediment control measures described in this SWPPP are in accordance with the New York State Standards and Specifications for Erosion and Sediment Control (Bluebook), dated November 2016.

A copy of this standard may be found at: www.dec.ny.gov/chemical/29066.html.

The Contractor is responsible for ensuring all erosion and sediment control measures and practices described in this SWPPP are implemented and maintained in compliance with this standard.

B. Post-Construction Stormwater Management Standards

The post-construction stormwater management practices have been designed to be incompliance with the performance criteria in the New York State Stormwater Management Design Manual (SMDM), dated January 2015 and the applicable sizing criteria in Part I.C.2.a.b.c. ord. of the Permit.

They have been designed by a licensed Professional Engineer (P.E.) proficient in stormwater management and treatment (see SWPPP Preparer on page 1).

The Contractor is responsible for ensuring all post-construction stormwater management practices are implemented (and maintained during construction) to be incompliance with this standard and this SWPPP when construction is complete. Permit coverage termination requires certification by a qualified individual that final construction of stormwater management practices complies with the design.

C. Local Standards

The site is located within the Towns of Orchard Park and Hamburg. Erie County is the MS4 Authority. The Towns of Orchard Park and Hamburg do not have local code requirements that exceed the requirements of the Permit.

VII. Contractor Requirements for SWPPP Documentation

A. Assembling the Complete SWPPP Document

The complete set of construction drawings and specifications are provided as separate documents; however, they should be considered an integral component of the SWPPP. The Contractor is responsible for adding the following documents as they become available or applicable to the SWPPP, in order to compose a complete SWPPP document:

- 1. Contractor & Sub-Contractor signed certifications to Appendix B, template in Appendix B.
- 2. Copies of the Trained Contractor's certifications to Appendix B.
- 3. The NYSDEC's Acknowledgement letter of receipt of the NOI to Appendix B.
- 4. All qualified inspection reports to Appendix H.
- 5. Compliance inspection reports, letters and communication to Appendix H.
- 6. The executed 5-acre waiver request to Appendix B.
- 7. All written requests and responses to change the frequency of inspections to Appendix H.
- 8. NOI updates or owner changes to Appendix B.
- 9. Any documentation supplementing, changing or revising the SWPPP to Appendix B.
- 10. When the Permit coverage is terminated the executed Notice of Termination and Stormwater Maintenance Agreement will also be part of the SWPPP and should be added to Appendix C.

B. Document Housing

A complete copy of this SWPPP, shall be kept at the construction site in a secure location accessible during normal business hours to compliance inspection personnel.

C. Document Updating

The Contractor shall mark-up, make notes in, and supplement the SWPPP with additional documentation as necessary so that at all times it accurately reflects the practices used, or intended to be used or constructed on the site. At a minimum, it is to be updated when;

- The current provisions are ineffective in meeting the Permit water quality requirements
- There is a change in the design, construction or operation that could effect the discharge of pollutants
- Issues or deficiencies are identified during a compliance inspection

D. Five (5) Acre Waiver Request Letter

Overall soil disturbance shall not exceed five (5) acres at any one time without prior written authorization from the MS4 Authority. A Five-Acre Waiver Request letter is included in Appendix B which may be used to request this authorization. If approved, the executed letter or other written authorization should be maintained in Appendix B of this SWPPP.

E. Owner Documentation at Project Termination

At the termination of the project, the Contractor is to provide the owner with a complete SWPPP Binder containing all applicable items listed above. The owner is required to retain a copy of these documents for a period of 5-years after permit coverage is terminated.

VIII. Contractor Requirements for General SWPPP Implementation

A. <u>SWPPP Implementation</u>

The general contractor and subcontractors performing any activity that involves soil disturbance are required to comply with the terms and conditions of this SWPPP as a condition of authorization to discharge stormwater. The provisions of this SWPPP are to be implemented from the commencement of construction activity until Permit coverage is terminated.

B. Authorized Soil Disturbance

All construction site disturbances, staging areas, etc. must be kept within the 184.00 Acre limits of disturbance shown on the construction drawings. Stormwater discharges from only this area has Permit coverage.

Should the Contractor identify additional areas outside of the coverage limits that may need to be disturbed for the project (including topsoil and soil spoil areas) they are to notify the owner as soon as possible and prior to proceeding with these activities. The Owner will notify the Contractor when all requirements have been met for extending Permit coverage to the additional area and construction in that location may commence.

Soil disturbance shall not disturb greater than five (5) acres at any one time without prior written authorization from the MS4 Authority. If soil disturbance exceeds 5-Acres at a time, the Contractor shall abide by the applicable soil stabilization requirements listed in Section XII.C and follow the Phasing Plan which defines the maximum disturbed area per phase and cut/fill requirements. Contractor is advised that disturbances exceeding 5-acres may require additional erosion and sediment control practices to protect water quality.

C. Allowed Discharge

Once Permit coverage is obtained, and all conditions for coverage are met as listed is Part II.B of the Permit, the Contractor is permitted to discharge stormwater, groundwater from dewatering per Part I.B.1.c and non-stormwater expressly authorized in Part I.E.3 & F of the Permit. Prohibited discharges listed in Part I.B.1.e are not allowed.

IX. Erosion and Sediment Control and Pollution Prevention Standards

A. Potential Sources of Pollution (Prohibited Discharges)

- Wastewater or leachate from concrete activities including washout of concrete equipment
- Wastewater from washout and cleanout of stucco, paint, form release oils, curing compounds and other construction materials
- Fuels, oils, or other pollutants used in vehicle and equipment operation and maintenance
- Soaps and solvents used in vehicle and equipment washing
- Toxic or hazardous substances from a spill or release
- Stormwater or snowmelt discharges mixed with sources of non-stormwater
- Sediment laden runoff from a large storm event or snow melt which would increase turbidity, suspended, colloidal or settleable solids to the receiving waterbody causing a substantial visible contrast to natural conditions, deposition or impairment of use.
- Discharges containing; residue from oil, floating substances, visible oil film, or grease.
- Non-sediment pollutants associated with general construction activity that may be stored, generated, or used on-site such as: fertilizers, pesticides, petroleum base chemicals, fuels, lubricants, sealers, paints, cleared woody vegetation, garbage, and sanitary wastes.
- Sediment laden runoff from disturbed areas, basins and impoundments

The 'minimum temporary erosion and sediment control practices and procedures to be used during construction' identified and described in Section XII.B are specified to prevent these potential pollutants and illicit discharges from occurring.

B. Additional Potential Sources of Pollution Identified by Contractor

If the Contractor identifies any additional activities reasonably expected to occur, or occurring at the site, which may involve pollutants or pollutant constituents that could be exposed to rainfall or snowmelt and thus have the potential to be discharged from the site, they may identify them by completing the table below

Pollutant-Generating Activity	Pollutants or Pollutant Constituents (that could be discharged if exposed to rain/snow melt)	Location on Site & Preventive Measure (or reference SWPPP site map)

C. Minimum Standards

The Contractor is ultimately responsible for ensuring the site at all times complies with Part I.B.1.a of the Permit for minimizing the discharge of pollutants.

X. Spill Prevention and Reporting

Hazardous Waste Management and Spill Reporting – Any hazardous or potentially hazardous waste that is brought onto the construction site will be handled properly in order to reduce the potential for storm water pollution. All materials used on this construction site will be properly stored, handled and dispensed following any applicable label directions. Material Safety Data Sheets (MSDS) information will be kept on site for any and all applicable materials.

Hazardous Properties includes: *pesticides, petroleum products, fertilizers, detergents, construction chemicals, acids, paints, paint solvents, cleaning solvents, additives for soil stabilization, concrete, curing compounds and additives and any clean water or stormwater*

Should an accidental spill occur, immediate action will be taken by the General Contractor to contain and remove the spilled material. *All hazardous materials will be disposed of by the Contractor in the manner specified by local, state, and federal regulations and by the manufacturer of such products.* As soon as possible, the spill will be reported to the appropriate state and local agencies. As required under the provisions of the Clean Water Act, any spill or discharge entering the waters of the United States will be properly reported.

Any spills of hazardous materials in quantities in excess of Reportable Quantities as defined by EPA or the State Agency regulations, shall be immediately reported to:

- EPA National Response Center : 1-800-424-8802
- NYSDEC Div. of Environmental Remediation (NYS Spill Hotline): 1-800-457-7362

The reportable quantity for petroleum products is 5-gal. Refer to Exhibit 1.1-1 of the NYSDEC Division of Environmental Remediation Technical Field Guidance Spill Reporting and Initial Notification Requirements for hazardous materials spill reportable quantities and procedures.

A. Minimum Spill Prevention Procedures

- All materials with hazardous properties must be stored in a secure and covered location when not in use
- Store the minimum practical quantity of hazardous materials at the job site and schedule deliveries as close to the time of use as practical
- All products should be stored in, and used from, the original container with the original product label.
- All products are to be used in strict compliance with the product label.
- Maintain a spill control and containment kit at the storage site.
- All of the product should be used before disposing of container. Dispose of containers and wash water in compliance with regulations. Wash water is not allowed to mix with stormwater.
- Dispose of excess product and containers in strict compliance with product labels and state and federal regulations.

B. Spill Containment Kit

A spill containment kit may contain absorbents such as; kitty litter or sawdust, acid neutralizing agent, brooms, dust pans, mops, rags, gloves, goggles, plastic and metal trash containers, etc.

XI. Project Soils

According to the NRCS Web Soil Survey, the following soil types and hydrologic groups are present within the project area of disturbance;

Soil Symbol, Name, % Slope Range	Hydrologic Group (HSG)	Texture	Drainage Character	Erosion Hazard Potential*	Depth to Restrictive Feature	Depth to Water Table	% of Project					
Angola silt Ioam, AoA, 0- 3%	D	Silty clay/channery loam followed	Somewhat Poorly	Slight	20-40 Inches to	6-18	25%					
Angola silt Ioam, AoB, 3- 8%	U	by weathered bedrock	Drained	Jight	Lithic Bedrock	Inches	14%					
Darien silt Ioam, DbA, 0- 3%	C/D	Silty/channery clay loam	Somewhat Poorly Drained	Slight	More Than 80 Inches	6-12 Inches	29%					
Fluvaquents and Udifluvents, Fu	A/D	Gravelly silt loam/sand	Very Poorly Drained	Slight	More Than 80 Inches	0-12 Inches	1%					
Illion silt loam, In	C/D	Silty/channery clay loam	Poorly Drained	Slight	More Than 80 Inches	0-12 Inches	7%					
Manlius channery silt loam, MaB, 3- 8%	С	Channery silt loam followed	loam followed	loam followed	loam followed	loam followed	loam followed So	Somewhat excessively	Moderate	20-40 Inches to	More Than	9%
Manlius channery silt Ioam, MaC, 8- 15%	C	unweathered bedrock	drained	Moderate	Lithic Bedrock	80 Inches	3%					
Marilla channery silt loam, MfA, 0- 3%	D	Channery silt loam	Moderately Well Drained	Slight	15-30 Inches to Fragipan	18-24 Inches	11%					
Pits, borrow, Pt	-	-	-	-	-	-	1%					

<u>Table II – Soil Types</u>

*Erosion hazard potential is the probability that the combination of soil cohesiveness, particle size and site slope will generate a significant amount of soil loss. Other erosion factors such as slope length, rainfall intensity and duration are not accounted for in this rating. Even sites with a low erosion risk can have a high risk to water quality when located close to a water resource.

A copy of the NRCS Soil Map may be found in Appendix G.

Erosion hazard potential is the probability that the combination of soil cohesiveness, particle size and site slope will generate a significant amount of soil loss. Other erosion factors such as slope

length, rainfall intensity and duration are not accounted for in this rating. Even sites with a low erosion risk can have a high risk to water quality when located close to a water resource.

Since the site has been previously developed, existing on-site soils may include imported fill or compacted soils that differ in type or properties than those listed in the NRCS soil study. The study generally indicates that the on-site soils are not suitable for large-scale infiltration practices due to mainly clay, poorly draining soils, along with shallow bedrock and groundwater table depth.

A subsurface geotechnical investigation and evaluation was conducted by McMahon & Mann Consulting Engineering and Geology, P.C. and documented in a Subsurface Exploration Table and Boring Location Map dated 5/18/22. The portion of the study completed and documented in the table included 34 borings and 17 groundwater monitoring wells. To date, most of the subsurface exploration has been completed in the vicinity of the proposed stadium footprint and not evenly dispersed across the site or in the location of proposed stormwater management facilities. The information available provides information on the depth to bedrock and groundwater and shows significant variation in depths across the investigated area. Refer to Section XIV.G for further discussion on groundwater and bedrock depths.

XII. Temporary BMPs to be Used During Construction

A. Site Map

The 'Buffalo Bills Stadium Plans' construction drawings prepared by Labella and Pinewoods Engineering include Erosion and Sediment Control Plans and Details that detail the: specific locations, size, dimensions, material specifications, and installation details for each Best Management Practice (BMP) specified in this SWPPP.

B. <u>Temporary Erosion and Sediment Control Best Management Practices (BMP's) to be Used During</u> <u>Construction</u>

The following minimum erosion and sediment control BMP's are specified for use on this project.

Practice	Bluebook Specification Pg	Operation & Maintenance Requirements	Maintenance Inspection Schedule
Protecting	2.26	Perform maintenance on fence as	Inspect daily for
Vegetation		needed.	maintenance and
During			compliance with
Construction			procedures
Concrete	2.24	Pump excess rainwater accumulated	Inspect practice daily for
Truck		over hardened concrete to stabilized	maintenance or leaks
Washout		filter strip	
		Remove accumulated hardened	Inspect site daily for
		material when 75% of storage	concrete discharges in
		capacity is filled. Excess wash water	non-designated areas.
		shall be pumped in a containment	
		vessel and properly disposed of	
		offsite.	
		Dispose of hardened material offsite	

		in a construction/demolition landfill. Repair and replace plastic liner as needed and with each cleaning.	
Stabilized Construction Access	2.30	Top dress with additional aggregate as needed. Remove all sediment spilled, dropped or washed outside of permitted area immediately. When necessary, clean wheels prior to leaving site. Washwater to drain to sediment trapping device.	Inspect access points outside of permitted area daily for track-out. Inspect practice daily for maintenance and effectiveness.
Silt Fence	5.54	Remove sediment accumulated behind fence as needed and when bulges appear. Replace sections of fence as needed. Secure posts, re-fasten cloth and re- embed cloth into ground as needed.	Inspect daily for maintenance and after storm events
Storm Drain Inlet Protection	5.57	Repair/Replace as necessary so installation conforms with specifications. Remove accumulated sediment as needed.	Inspect daily for maintenance and after storm events
Check Dam	3.2	Remove sediment accumulated behind dam as needed Install additional dams if erosion occurs between structures.	Inspect practice after each runoff event
Dewatering Sump Pit	3.7/5.16		
Construction Ditch	3.4	Remove accumulated sediment. Check berm is secure. Avoid traffic over ditch.	Inspect daily for maintenance and after storm events
Rock Outlet Protection	3.39	Repair as necessary so practice is in compliance with design detail.	Inspect after high flow for evidence of scour beneath the riprap or for dislodged rocks
Temporary Seeding	4.58	Water as necessary. Repair drainage trenches and reseed bare areas.	Inspect daily for maintenance and after storm events
Filter Sock	5.7	Do not permit traffic to cross Remove accumulated sediment when it reaches half the above ground height of the sock and disposed of accordingly Repair or replace damaged socks in accordance with manufacture's recommendations and/or within 24- hrs of inspection.	Inspect weekly and after each runoff event.

Sediment	5.46	Remove accumulated sediment from	Inspect before
Тгар		bottom when it reaches a depth of 12-inches. Pump down water through appropriate means before anticipated storm event. <i>Refer to Appendix D for design of</i> <i>Sediment Traps</i>	anticipated storm events for adequate capacity and after storm events for maintenance.
Winter Stabilization	2.38	Repair any facilities damaged by snow or other means. Re-stabilize any bare or eroded areas.	Inspect after large snow events or anticipated melt-off events.
Soil Restoration	4.52	Area is to be kept free of vehicular and foot traffic or other weight loads.	Inspect daily to ensure proper procedures for area are followed.

C. Stabilization Plans

The following stabilization plans are to be used during various phases of the project. Refer to Section XIII.A for a list of specific construction activities and associated Stabilization Plans that should be used during those activities.

- Plan I To the greatest extent possible, phase soil disturbance activities so only those areas actively being worked are disturbed. Use Plan II for stabilization when complete. or for in-active areas.
- Plan II For any areas that have been temporary disturbed from construction activities: provide a temporary vegetative cover through temporary seeding performed in accordance with the bluebook specification "Temporary Construction Seeding" on page 4.58. Where a temporary construction area planting mix is not specified on the Landscaping or Construction Drawings, use the following:

For spring, summer or early fall; seed the area with ryegrass (annual or perennial) at 30lbs per acre. For late fall or early winter, then seed Certified 'Aroostook' winter rye (ceral rye) at 100 lbs per acre. Mulch the area with hay or straw at 2 tons per acre. Anchor mulch where required.

- Plan III For any areas that have been disturbed from construction activities use one of the methods below:
 - 1. *For proposed impervious and gravel areas:* Permanently stabilize with a minimum depth of 6-inches of well-compacted clean subbase or gravel.
 - 2. For proposed permanent vegetative waterways/bioretention areas/pond areas: provide a permanent vegetative cover through permanent seeding performed in accordance with the bluebook specification 'Vegetative Waterways' on page 4.78. Use the planting mix specified in the Construction Drawings.
 - 3. For proposed landscape areas: permanently stabilize using either vegetative or landscape hardscape cover in accordance with the Construction Drawings. Stabilization to be performed in compliance with the bluebook specification "Trees, Shrubs and Vines", page 4.63.
 - 4. For proposed lawn areas: Establish permanent grasses with other forbs and/or shrubs to provide a minimum uniform 80% perennial vegetative cover on areas disturbed by construction. Prior to seeding, perform soil restoration in accordance with soil restoration BMP requirements. Comply with 'Permanent Construction Area Planting' and 'Recreation Area Seeding' in Bluebook, pages 4.42 & 4.45. Use permanent construction area planting mix

specified on the Construction Drawings.

Follow bluebook specification for site preparation, liming, fertilizing, planting, protecting and maintaining. Follow bluebook specification for topsoiling on page 4.59.

 Plan IV – When permanent stabilization has reached a uniform density of 80% across all pervious areas, notify the owner. A final Qualified Inspection will be required so the Notice of Termination may be filed. When notified by the owner or owner's representative; remove temporary sediment control practices and restore lawn to original condition.

D. <u>Temporary Erosion and Sediment Control Procedures to be Used on a continual (as-needed)</u> <u>basis During Construction</u>

Table V – Best Management Procedures lists erosion and sediment control procedures that are included in the SWPPP design and should be used on a continual (and as-needed) basis during all construction activities.

Practice	Description	Procedure & Implementation	Maintenance
Track-Out	Minimize the track-out of sediment onto streets or paved areas from vehicles existing the site.	Implement as necessary and perform daily inspection to monitor track-out. Remove by sweeping, shoveling, vacuuming or other effective measures. Hosing or sweeping sediment into a non-sediment trapping practice (ie. inlet) is prohibited.	Remove deposited sediment by the end of the same work day in which it occurred or by the end of the next work day if it occurs on a non-work day.
Dewatering	Permit compliance requirements for the discharge of stormwater removed from excavations, trenches, foundations, vaults, etc.	Only clean water, not mixed with cleaning solvents, fertilizer, or other pollutants may be allowed to discharge in a non-erosive manner.	Monitor for compliance.
Topsoil & Soil Stockpile Control	Controls to minimize discharge of sediment from soil stockpiles.	Install silt fence around stockpiles, minimum 10' from toe of slope. Locate stockpile away from or upstream of drainage flows. Temporary seed stockpiles.	Reseed bare areas in temporary stabilization, maintain surrounding silt fence. Hosing or sweeping sediment to a non-sediment trapping practice (ie. inlet) is prohibited.
Dust Control	Control surface and air movement of dust resulting from disturbed soil surfaced.	Implement dust control as needed, during dry conditions and periods of large, open disturbance.	Maintain vegetated buffer areas as long as possible and phase construction to minimize disturbed areas at a time. Use a control method that will not degrade the water quality of waters in the vicinity.
Soil Compaction	Controls to minimize compaction through the restriction of vehicle or equipment access across	Delineate areas where future infiltration practices will be located with flagging. Create vehicle routes within site that	To the greatest extent possible for grading, keep construction vehicles from traveling across non-

<u>Table IV – Best Management Procedures</u>

	areas where final vegetative stabilization will occur or infiltration practices will be installed.	align with future impervious areas.	compaction areas. Repair compacted areas as necessary by following soil restoration steps on plans.
Equipment and Vehicle Washing	Compliance for equipment and vehicle washing discharge	Soaps, detergents and solvents used for equipment and vehicle cleaning are not permitted to be discharged. Clean water may be used for equipment and vehicle washing, wheel wash water and other wash waters and allowed to discharge only if used in conjunction with a BMP to capture sediments and pollutants prior to discharge.	Monitor for compliance
Storage, Handling & Disposal of Products, Materials and Wastes	Procedures for preventing potentially pollutant materials on-site from mixing with, or contaminating stormwater including: pesticides, herbicides, insecticides, fertilizers, landscape and building materials, construction and domestic waste, and sanitary wastes	Identify potential pollutants onsite and cover to protect from stormwater exposure and potential for runoff.	Monitor for compliance For Spill Prevention & Response procedures refer to later portion of this report.
Pollutant & Chemical Treatment Control	Controls to identify and control any treatment chemicals or pollutants which may be or are used at the site.	Complete the Pollutant Identification Sheet included in Appendix B for chemicals and pollutants which can reasonably be expected to be used or stored at the site	Update the Pollutant Identification Sheet in Appendix B during construction if additional chemicals or pollutants are identified as needed. Follow all product specifications for storage, use and disposal.

E. <u>Maintenance Inspections – Contractor</u>

A Trained Contractor must inspect the erosion and sediment control practices and pollution prevention measures being implemented within the active work area daily to ensure that they are being implemented within the active work area daily to ensure that they are being maintained in effective operating condition at all times. If deficiencies are identified, the contractor shall begin implementing corrective actions within one business day and shall complete the corrective actions in a reasonable time frame.

- Temporary Suspension: For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the trained contractor can stop conducting the maintenance inspections. The contractor shall resume inspections as soon as soil disturbance activities resume.
- Partial Completions: For construction sites where soil disturbance activities have been shut down with partial project completion, the trained contractor can stop conducting the inspections if all areas disturbed as of the project shutdown date have achieved final stabilization and all post-

construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational

F. Qualified Inspections

The Permit requires the owner/operator to have a qualified professional conduct an assessment of the site prior to commencement of construction and certify in an inspection report that the appropriate erosion and sediment controls described within the SWPPP have been adequately installed or implemented to ensure overall preparedness of the site for the commencement of construction. After the initial inspection, subsequent Qualified Inspections are to occur within the following timeframe:

- Construction is on-going (disturbance is irreverent because of discharge to 303d waterbody): Two
 inspection every seven days spaced by a minimum of two days.
- Temporary Suspension of Soil Disturbance Activities: Once every 30 days (Regional Office Stormwater Contact Person must first be notified in writing prior to reducing frequency of inspections)
- Partial Completion Shut-Down: Not required (Regional Office Stormwater Contact Person must first be notified in writing prior to reducing frequency of inspections). If soil disturbance activities are not resumed within 2 years from the date of shutdown, the owner or operator shall have the qualified inspector perform a final inspection and certify that all disturbed areas have achieved final stabilization.

These Qualified Inspections are in-addition to the Trained Contractor Inspections. The Contractor shall make the hard copy of the SWPPP which is maintained at the construction site available to the Qualified Inspector for review at the first inspection. The Contractor will be provided with an electronic copy of the inspection report within one business day of the Qualified Inspection. The Contractor is responsible for completing any action items noted in that report within one-business day of receipt. The Contractor is also responsible for placing a copy of the inspection report in Appendix H of this SWPPP. If the individual or entity completing the Qualified Inspections differs from the SWPPP Preparer, than the Contractor shall ensure that the SWPPP Preparer is also provided an electronic copy of all Qualified Inspection Reports.

G. <u>Maintenance Requirements Prior to Turning Over Post-Construction Stormwater Management</u> <u>Facilities to Owner</u>

All post-construction stormwater management facilities shall fully comply with all design requirements and specifications in the Construction Drawings and SWPPP prior to being turned over to the owner. Filing of the Notice of Termination to end permit coverage requires an inspection and certification as such. Since these facilities may be temporarily used to convey or control sediment-laden stormwater runoff during construction they may need to be maintained prior to turning over to the owner. Table VI lists maintenance requirements for post-construction stormwater management facilities prior to turning over to the owner.

Facility	Requirements
Bioretention Facilities, Ponds,	Ensure final construction complies with all design
Forebays & Deep Pools	requirements and specifications in the Site Plans and SWPPP.
	If necessary, remove accumulated silt in pond or pre-
	treatment areas. Ensure there are no bare or eroded areas
	and rip-rap spillway is clean without any trenches or eroded
	areas.
Swales & Outlet Structures	Ensure final construction complies with all design
	requirements and specifications in the Site Plans and SWPPP.
	If necessary, remove accumulated silt in swale. Ensure outlet
	structure and piping is clean of sediment and any bare areas
	are replanted if necessary. Ensure there are no bare or
	eroded areas and rip-rap emergency spillway is clean.
Rip-Rap Outlet Protection	Ensure final construction complies with all design
	requirements and specifications in the Site Plans and SWPPP.
	Stone to be dense and secured for adequate velocity
	mitigation.
Storm Sewer Structures,	Ensure structures, chambers and pipes are free of sediment
underground detention chambers,	and debris.
water quality units and Pipes	

Table V – Post-Construction Stormwater Management Maintenance Requirements
Following Construction Completion

XIII. Construction Phasing

The following Sequence of Construction Activities is a suggested phasing sequence of major construction activities and associated the minimum erosion and sediment control practices to be installed for each activity resulting in soil disturbance. This list indicates when each erosion and sediment control practice should be installed and when it should be removed. While in-place, each practice should be inspected and maintained as described in Section XII.B.

A. Sequence of Construction Activities

<u>Table VI – BMP's Associated with Construction Activities</u>

Construction Activity	BMP's to be Implemented Prior to Activity Commencing*	BMP's to be Implemented and/or Maintained During Activity	Soil Stabilization Plan to be Used During Activity (Ref. XII.C)
Prepare staging and operations area (ie. Trailers, parking and storage areas, temporary fencing, sanitation facilities, etc.)	-Protecting Vegetation During Construction -Stabilized Construction Entrance -Silt Fence/Silt Sock -Inlet Protection	-Stabilized Construction Entrance -Silt Fence/Silt Sock -Inlet Protection	Plan I

Г				
	-Stabilized Construction	-Stabilized Construction		
Demolition, clearing	Entrance	Entrance	Plan I	
and grubbing	-Silt Fence/Silt Sock	-Silt Fence/Silt Sock		
	-Inlet Protection	-Inlet Protection		
	-Stabilized Construction	-Stabilized Construction		
	Entrance	Entrance		
Excavation, topsoil	-Silt Fence/Silt Sock	-Silt Fence/Silt Sock		
stripping and rough	-Inlet Protection	-Inlet Protection	Plan II	
grading	-Construction Ditch	-Construction Ditch		
	-Check Dam	-Check Dam		
	-Sediment Trap/Basin	-Sediment Trap/Basin		
	-Stabilized Construction	-Stabilized Construction		
	Entrance	Entrance		
	-Silt Fence/Silt Sock	-Silt Fence/Silt Sock		
	-Inlet Protection	-Inlet Protection		
Utility Installation	-Construction Ditch	-Construction Ditch	Plan II	
	-Check Dam	-Check Dam		
	-Sediment Trap/Basin	-Sediment Trap/Basin		
	-Rock Outlet Protection	-Rock Outlet Protection		
	-Concrete Washout	-Concrete Washout		
		-Stabilized Construction		
	-Stabilized Construction	Entrance		
	Entrance	-Silt Fence/Silt Sock		
	-Silt Fence/Silt Sock	-Inlet Protection		
Stadium foundation	-Inlet Protection	-Construction Ditch		
and Infrastructure	-Construction Ditch	-Check Dam	Plan II	
construction	-Check Dam	-Sediment Trap/Basin		
	-Sediment Trap/Basin	-Rock Outlet Protection		
	-Rock Outlet Protection	-Dewatering		
	-Concrete Washout	-Concrete Washout		
	-Stabilized Construction	-Stabilized Construction		
	Entrance	Entrance		
Fine Creding ourbing	-Silt Fence/Silt Sock	-Silt Fence/Silt Sock		
Fine Grading, curbing	-Inlet Protection	-Inlet Protection	Dian	
and pavement	-Construction Ditch	-Construction Ditch	Plan II	
construction	-Check Dam	-Check Dam		
	-Sediment Trap/Basin	-Sediment Trap/Basin		
	-Rock Outlet Protection	-Rock Outlet Protection		
	-Concrete Washout	-Concrete Washout		
Finalize Post-Construction	Silt Eanco/Silt Sook	Silt Eanca/Silt Saak		
Stormwater Management	-Silt Fence/Silt Sock -Inlet Protection	-Silt Fence/Silt Sock -Inlet Protection	Dian III	
Facilities, Perform Soil Restoration and			Plan III	
Landscaping Installation	-Rock Outlet Protection	-Rock Outlet Protection		
Punchlist Items and			<u> </u>	
Project Close-Out	N/A	-Stabilization	Plan IV	
FIUJELI CIUSE-UUL				

*Temporary Erosion and Sediment Control Policies to be used on a continual (as-needed) basis listed in Section XII.C are assumed to be provided as required during all construction activities.

XIV. Site Planning and Design

Preservation of natural features includes techniques to identify and preserve natural areas that can be used to protect water, habitat and vegetative resources. Conservation includes designing elements of the development in a way that the site design takes advantage of a site's natural features, preserves sensitive areas and identifies constraints and opportunities to prevent or reduce negative effects of a development. The potential environmental impacts associated with the project are being analyzed as part of the New York State Environmental Quality Review Act process. Where necessary potential impacts will be mitigated to the greatest extent possible by the design of the project and in compliance with the Permit (GP 0-20-001) requirements.

XV. Existing Drainage Conditions

The site topography generally is elevated in the central portion of the site, Abbott Road transects the project area in a north-south direction at the approximately mid-point laterally of the site. The eastern portion of the site, generally east of Abbott Road generally slopes in a north-easterly/easterly direction towards Smokes Creek and Southwestern Boulevard. The southern portion of the site, generally west of Abbott Road slopes in a southwesterly direction towards Rush Creek tributary and Big Tree Road. The north/west portion of the site generally slopes to the north and westerly direction towards Southwestern Boulevard and the west.

Generally, drainage on the south-west side of Abbott Road flows south-westerly and eventually reaches the Rush Creek tributary mainly through private on-site storm sewer systems. This includes Erie Community College (ECC) parking areas on the south side of the campus. Portions of the private collection system discharge directly to the Creek, this area is considered drainage subarea #1A-I. Portions of the private collection system are discharged to an existing stormwater management basin, which does not comply with the current SMDM standards, and then to Rush Creek tributary, this area is considered drainage subarea #1A-II.

The majority of the drainage on the east side of Abbott Road (north and south) including the existing stadium drainage and groundwater collection system is collected in a private on-site storm sewer system and conveyed to Smokes Creek through several different sewers and discharge points, this area is considered drainage subarea #2A. Additionally, there is a significant portion of existing parking areas on the west side of Abbott Road that is also collected in a private on-site storm sewer system and conveyed to Smokes Creek which is also part of drainage subarea #2A. On the northwest side of Abbott Road, runoff flows north and is intercepted in the storm sewer system within the Southwester Boulevard right-of-way, this area is considered drainage subarea #2B. Small portions of the drainage to the right-of-way are via onsite connected basins. The storm sewer system along Southwestern Boulevard east of the Abbott Road intersection conveys drainage to the South Branch of Smokes Creek.

The existing ECC campus buildings and the parking areas to the north, west and southwest have private on-site storm sewer systems that convey drainage in a westerly direction to an existing stormwater management pond. This practice appears to comply with current SMDM standards. According to record drawings, the pond has an outlet that connects to a storm sewer system in Southwestern Boulevard that conveys flows in a westerly direction to Rush Creek. This area is

considered drainage subarea #3A. Mainly lawn areas on the north side of the ECC campus and one small storm sewer connection to Abbott Road and Southwestern Boulevard have runoff which is collected in the Southwestern Boulevard storm sewer system that is associated with State Route 20 and owned by the New York State Department of Transportation (NYSDOT). This portion of sewer in the state right-of-way, and west of the Abbott Road intersection, conveys runoff in a westerly direction to the same existing stormwater pond that eventually outlets to Rush Creek.

There are not any significant areas of offsite stormwater run-on to the project area. Small portions of the Erie Community campus lawn, patio and sidewalk areas on the western end of the project sheet flow onto the site.

Existing portions of the site located within the project limits of disturbance, or draining to the primary project drainage or stormwater points for these projects, were included in the existing conditions hydrologic analysis and used to establish the existing conditions peak runoff rates for the 1-year, 10-year, 25-year and 100-year storm events.

The existing project area has three (3) separate receiving waterbodies of project runoff, considered discharge points.

- Discharge Point #1 is the unnamed tributary of Rush Creek on the south end of the site. Runoff from the project reaches this discharge point via two (2) runoff points which have been divided into subareas. Discharge Point #1 has the following associated subareas;
 - 1. Drainage Area #1A-I flows in a southwesterly direction and directly discharges to Rush Creek tributary.
 - 2. Drainage Area #1A-II flows in a southwesterly direction and discharges to an existing basin with an outlet to Rush Creek tributary. The existing basin was modeled in the hydrologic analysis using the topographic contours from 742.60 to 751.00 ft. 85-ft of 36-inch diameter pipe storage at 2.6%, with invert elevation at 743.80-ft was also modeled for storage. The outlet components were taken from the survey and included:

-A primary 30-inch diameter outlet pipe, 105- ft long at 0.19% slope with an invert elevation of 742.09

-An upstream culvert routed to the primary culvert consisting of a 15-inch diameter pipe, 25-ft long at 1.44% slope with an invert elevation of 742.98

-A 24" square inlet with a horizontal top of grate elevation at 750.84-ft and routed to the primary outlet pipe.

-A 10-ft wide spillway at elevation 750.00-ft.

- Discharge Point #2 is the South Branch of Smokes Creek just beyond the eastern boundary of the site. Runoff from the project reaches this discharge point via two (2) runoff points which have been divided into subareas. Discharge Point #2 has the following associated subareas;
 - 1. Drainage Area 2A is collected in a private onsite storm sewer system at various locations and is conveyed by storm piping to the creek.
 - 2. Drainage Area 2B is collected in the Southwestern Boulevard storm sewer system at various locations. Some runoff reaches this through overland sheet flow, some through direct inlet connections and some is conveyed to the right-of-way via swale and then an inlet and storm pipe connection convey it to the public system. The public storm sewer system is believed to flow in an easterly direction and discharge to Smokes Creek.

- Drainage Area #3 is the existing stormwater pond located offsite to the west with an outlet to the Rush Creek waterbody. Runoff from the project reaches this discharge point via two (2) runoff points which have been divided into subareas. Discharge Point #3 has the following associated subareas;
 - Drainage Area 3A consists of the existing ECC campus and is collected in a private onsite storm sewer system at various locations and is conveyed by storm piping to an existing stormwater management pond. An outlet structure from this pond directs flows in the SR 20 storm sewer westerly to the outlet at Rush Creek.
 - 2. Drainage Area 3B consists of mainly lawn areas from ECC campus that drain to the NYSDOT storm sewer system in Southwestern Boulevard (SR 20). The portion of this system west of the Abbott Road intersection conveys flows in a westerly direction to an existing stormwater management pond. An outlet structure from this pond directs flows in the SR 20 storm sewer westerly to the outlet at Rush Creek.

Refer to the 'Existing Conditions Drainage Area Map' in Appendix A for a map showing existing catchment boundaries, flow paths and design points. Table VII provides a summary of these areas.

Discharge	Drainago	A #00		Тс	Peak Runoff Rate (cfs)			
Discharge Point	Drainage Area	Area (Ac)	CN	(min)	1-Yr	10-Yr	25-Yr	100-Yr
Forne	Alea	(AC)		(11111)	Storm	Storm	Storm	Storm
	DA #1A-I	52.30	86	40.5	25.97	66.30	90.00	137.05
	DA #1A-II	17.15	92	7.2	31.15	63.18	80.77	114.68
	Pond							
DP #1	Outflow	-	-	-	10.79	14.05	21.50	75.03
51 112	(ExP)							
	DA #1							
	Total	69.45	-	-	35.65	80.09	106.13	162.21
	(DP-1)							
	DA #2A	73.41	95	21.6	101.79	192.53	241.86	336.92
	2A Reach	-	-	6.9	100.78	190.66	239.52	333.68
	DA #2B	1.84	96	28.1	2.31	4.26	5.32	7.36
DP #2	2B Reach	-	-	8.0	2.29	4.23	5.28	7.31
	DA #2							
	Total	75.25	-	-	102.83	194.44	224.25	340.23
	(DP-2)							
	DA #3A	28.77	86	39.4	14.57	37.13	50.40	76.73
	3A Reach	-	-	3.7	14.53	37.04	50.27	76.53
	DA #3B	22.53	84	35.1	10.44	28.71	39.69	61.73
DP #3	3B Reach	-	-	8.6	10.42	28.64	39.59	61.57
	DA #3							
	Total	51.30	-	-	24.90	65.53	89.66	137.79
	(DP-3)							
Total	DA Total	196.00	-	-	154.04	319.89	415.86	607.60
	(ET)							

Table VII – Existing Conditions Drainage Area Summary

XVI. Proposed Drainage Conditions

The proposed improvements have been designed to meet local and state jurisdictional requirements which are intended to result in a negligible or beneficial impact on downstream drainage conditions as compared with existing conditions. The proposed hydrology has been designed to closely match existing conditions and re-use existing storm conveyance infrastructure to the greatest extent possible.

A portion of the drainage on the south-west side of Abbott Road will continue to be collected in a storm sewer system and discharged directly to the Rush Creek tributary utilizing the existing storm sewer piping, this area is considered drainage subarea #1A-I. The existing stormwater basin will be redeveloped into a standard practice wet pond, denoted as P-1. The wet pond will provide water quality volume, channel protection volume, and peak runoff rate attenuation. The pond will utilize existing storm sewer piping to discharge to the Rush Creek tributary. The area that is conveyed directly to this pond is considered drainage subarea #1A-II. Four (4) bioretention facilities are proposed on the south-west side of Abbott Road to collect drainage from the majority of the new parking areas. Runoff to bioretention facility #1 (B-1) is associated with drainage subarea #1A-IV; runoff to bioretention facility #2 (B-2) is associated with drainage subarea #1A-V; and runoff to bioretention facility #4 (B-4) is associated with drainage subarea #1A-VI. The bioretention facilities are considered a standard/green practice and provide Runoff Reduction Volume and Water Quality Volume. They are designed to discharge to the existing storm sewer system that, with proposed modifications, will discharge to the wet pond (P-1) and ultimately the Rush Creek tributary.

The majority of the drainage on the east side of Abbott Road and a portion of the drainage from new parking areas on the west side of Abbott Road north of the new stadium will continue to be collected in a private on-site storm sewer system, utilizing existing components to the greatest extent possible, this area is considered drainage subarea #2A-I. The storm sewer system will be modified to route portions through a hydrodynamic water quality unit prior to discharge to Smokes Creek at approximately the same outlet points as existing conditions. A new bioretention facility #6 (B-6) is proposed to treat a small portion of runoff from an existing parking area, this facility is associated with drainage subarea #2A-II. The new stadium footprint is associated with drainage subarea #2B and will have an internal system for collecting roof and field runoff along with a groundwater collection system. This system will be directed to a hydrodynamic water quality unit before it is conveyed to Smokes Creek. A portion of the drainage from the existing parking areas east of Abbott Road and north and east of the existing stadium will continue to be collected in a private storm sewer system and discharged to Smokes Creek at existing outlet points, this area is considered drainage subarea #2C. The existing stadium has a runoff and groundwater drainage pipe that discharge to Smokes Creek. After the stadium is removed, this area will be resurfaced and is designed to be collected in a storm sewer system with a hydrodynamic unit located at the outlet prior to discharge. That system will also include a bypass which during high-flows from less frequent storm events, larger volumes of runoff will be directed to an underground chamber detention storage system which will serve to attenuate peak discharge rates. This area is associated with drainage subarea #2D.

Runoff from portions of the existing parking areas to the west and north of ECC campus will continue to be collected in a private storm sewer system and directed to the existing standard-practice stormwater management pond located offsite to the west. This area is considered drainage subarea

#3A-I. Runoff from new parking areas on the east side of the ECC campus will be collected in a private storm sewer system. That system will contain a bypass which will direct some of the flows to a bioretention facility #5 (B-5) and the remaining flows to a new standard practice wet pond (P-2). The area directed to the bypass structure is drainage subarea #3A-II. Areas which are not directed to the bypass structure and instead are drained directly to the stormwater pond (P-2) are associated with drainage subarea #3A-III. A portion of the lawn areas on the north side of ECC will continue to sheet drain to the north to Southwestern Boulevard and ultimately through the NYSDOT storm sewer system to the existing offsite stormwater pond. This area is associated with drainage subarea #3B. The existing offsite stormwater pond maintains an outlet structure that discharges to the Southwester Boulevard storm sewer system west of the pond and eventually discharges to Rush Creek.

There are not any significant areas of offsite stormwater run-on to the project area under proposed conditions. Small portions of the ECC campus lawn, patio and sidewalk areas on the western end of the project sheet flow onto the site.

Portions of the site located within the project limits of disturbance, or draining to the primary project drainage or stormwater points for these projects, were included in the proposed conditions hydrologic analysis and used to establish the existing conditions peak runoff rates for the 1-year, 10-year, 25-year and 100-year storm events.

The proposed project area has the same three (3) separate receiving waterbodies of project runoff, considered discharge points as existing conditions; a summary of these are:

- Discharge Point #1 is the unnamed tributary of Rush Creek on the south end of the site. Runoff from the project reaches this discharge point via two (2) runoff points which have been divided into subareas. Discharge Point #1 has the following associated subareas;
 - 1. Drainage Area #1A-I flows in a southwesterly direction and directly discharges to Rush Creek tributary.
 - 2. Drainage Area #1A-II flows in a southwesterly direction and receives runoff from upstream drainage areas #1A-III through #1A-VI. This area discharges from the wet pond P-1 to the existing storm sewer outlet point to Rush Creek tributary.
- Discharge Point #2 is the South Branch of Smokes Creek just beyond the eastern boundary of the site. Runoff from the project reaches this discharge point via four (4) runoff points which have been divided into subareas. Discharge Point #2 has the following associated subareas;
 - Drainage Area 2A is collected in a private onsite storm sewer system at various locations and portions are conveyed by storm piping to stormwater management practices associated with drainage areas #2A-I and 2A-II and then to the creek.
 - 2. Drainage Area 2B is the new stadium collection system which is conveyed first to an internal hydrodynamic unit and then to the creek.
 - 3. Drainage Area 2C is both sheet drained and collected in private onsite storm sewer systems that discharge at various locations via existing sewers to the creek.
 - 4. Drainage Area 2D is the pavement area which will replace the existing stadium when removed, this area is conveyed to a hydrodynamic unit and portions of the runoff to an underground chamber detention system before discharge to the creek.
- Discharge Point #3 is the existing offsite stormwater management pond located west of ECC

campus and the storm sewer system in Southwestern Boulevard which conveys drainage to Rush Creek. Runoff from the project reaches this discharge point via two (2) runoff points which have been divided into subareas. Discharge Point #3 has the following associated subareas;

- 1. Drainage Area 3A is collected in a private onsite storm sewer system at various locations and portions are conveyed by storm piping to the existing storm piping on the ECC campus and to the existing offsite stormwater pond. Runoff collected in this system and discharge in the offsite pond is associated with drainage area #3A-I. Runoff which is first directed to an onsite stormwater management practice prior to discharge to the offsite pond is associated with drainage areas #3A-II.
- 2. Drainage Area 3B is the lawn areas on the north end of the site that continue to sheet flow to the north and are collected in the Southwestern Boulevard storm sewer system that conveys flows to the west to the existing offsite pond.

Refer to the 'Proposed Conditions Drainage Area Map' in Appendix A for a map showing proposed catchment boundaries, flow paths and design points. Table VIII is a summary of these areas:

Discharge		Sub Bossiving	Area		Тс	Peak Runoff Rate (cfs) - Undetained			
Discharge Point (DP)	Drainage Area	Sub-Receiving Point	Area (Ac)	CN	(min)	1-Yr	10-Yr	25-Yr	100-Yr
		Point	(AC)		(1111)	Storm	Storm	Storm	Storm
	DA #1A-I	-	26.04	89	32.8	18.87	43.22	57.06	84.08
	DA #1A-II	Pond (P-1)	10.12	92	6.0*	18.84	38.25	48.91	69.47
	DA #1A-III	Bio (B-1) & Pond (P-1)	5.40	95	6.0*	11.84	22.14	27.74	38.53
DP #1	DA #1A-IV	Bio (B-2) & Pond (P-1)	6.75	92	6.0*	12.57	25.52	32.64	46.36
	DA #1A-V	Bio (B-3) & Pond (P-1)	5.32	94	6.0*	11.08	21.28	26.84	37.53
	DA #1A-VI	Bio (B-4) & Pond (P-1	2.57	94	6.0*	5.36	10.29	12.97	18.14
	DA #1 Total	-	56.21	-	-	-	-	-	-
	DA #2A-I	WQU	40.03	96	20.2	60.68	111.62	139.28	192.64
	DA #2A-II	Bio (B-6)	2.98	96	6.0*	6.84	12.48	15.55	21.46
	DA #2A Total	-	43.01	-	-	64.21	118.34	147.81	204.68
	DA #2A Reach	-	-	-	6.9	63.38	116.85	145.94	202.12
	DA #2B	WQU	11.87	98	6.0*	29.40	51.38	63.39	86.65
DP #2	DA #2B Reach	-	-	-	8.0	28.54	49.89	61.55	84.14
DF #2	DA #2C	-	11.52	91	6.0*	20.20	42.21	54.38	77.89
	DA #2D	WQU	17.42	98	6.0*	43.13	75.39	93.00	127.13
	DA #2Bypass	Bypasses Chambers	-	-	-	43.13	70.00	70.00	70.00
	DA #2D Total	-	-	-	-	43.13	73.65	81.21	113.36
	DA #2 Total	-	83.81	-	-	-	-	-	-

<u>Table VIII – Proposed Conditions Drainage Area Summary</u>

Refer to next page for continuation of table

Discharge		Sub Bosoiving	Area		Тс	Peak Ru	k Runoff Rate (cfs) - Undetained		
Discharge Point (DP)	Drainage Area	Sub-Receiving Point	Area (Ac)	CN	Tc (min)	1-Yr	10-Yr	25-Yr	100-Yr
Tome (BT)		1 onite	(~~)		()	Storm	Storm	Storm	Storm
	DA #3A-I	-	31.33	87	39.4	17.20	42.27	56.84	85.61
	DA #3A-II	Bio (B-5) & Pond (P-2)	14.94	94	6.0*	31.10	59.75	75.34	105.36
	DA #3 Bypass	To Bio (B-5)	-	-	-	14.30	14.30	14.30	14.30
	DA #3A-III	Pond (P-2)	2.30	83	6.0*	2.33	6.22	8.56	13.24
DP #3	DA #3A Reach	-	-	-	3.6	0.40	3.58	7.88	12.57
	DA #3 Total	-	48.57	-	-	17.50	45.25	62.85	98.15
	DA #3 Reach	-	-	-	1.6	17.43	45.08	62.62	97.88
	DA #3B	-	7.41	84	20.4	4.91	13.28	18.27	28.27
	DA #3B Reach	-	-	-	8.5	4.87	13.17	18.16	28.81
	DA #3 Total	-	55.98	-	-	-	-	-	-
Total	DA Total (PT)	-	196.00	-	-	-	-	-	-

*Minimum time of concentration value of 6 minutes used, calculated time may have been less.

XVII. Existing and Proposed Condition Stormwater Modeling

A. Hydraulic Modeling and Methodology

The privately-owned, closed-conduit storm sewer system has been designed to gravity convey the 10-year storm event to either a post-construction management practice or existing downstream storm sewer. The new pipes were sized using Autodesk's Storm and Sanitary Analysis software and the Rational Method. The Intensity-Duration-Frequency (IDF) curve was taken from the Cornell Extreme Precipitation data studies. A manning's n-value of 0.012 was used to model High-Density Polyethylene Pipe that is slightly aged. A free-outfall tailwater condition is utilized in the design. New storm sewers downstream of stormwater management practices operate under pressure flow conditions and are included in the HydroCAD modeling.

B. <u>Hydraulic Modeling Results</u>

The proposed storm sewer system design is shown on the Construction Drawings. All new proposed gravity-flow pipes have a design flow that does not exceed the pipe capacity. Refer to Appendix D for the storm sewer sizing analysis results reports and the 10-year IDF curve.

C. Hydrologic Modeling and Methodology

The SCS hydrologic analysis method, as outlined in TR-55, was used to derive the stormwater runoff results. Stormwater rainfall amounts were taken from the Cornell Extreme Precipitation data studies. A type II storm distribution curve was used. 100% of the composite drainage areas to Discharge Point #1 and Discharge Point #3 was considered to have HSG=D. For Discharge Point #2, 14% of the composite drainage area was considered to have HSG=C and 86% to have HSG=D. In accordance with TR-55 requirements, a minimum Time of Concentration (Tc) value of 6.0 minutes was used. The analysis was performed using HydroCAD software, version 10.10-4a. Refer to Appendix D for detailed calculations and hydrologic analysis report print-outs.

D. Existing Conditions Hydrologic Analysis Results

The results of the existing condition hydrologic analysis are shown on the following table:

Drainage Area	1-Year Rate (cfs) (Vol., Ac-ft)	10-Year Rate (cfs) (Vol., Ac-ft)	25-Year Rate (cfs) (Vol., Ac-ft)	100-Year Rate (cfs) (Vol., Ac-ft)
D.A. #1 Total	35.65	80.09	106.13	162.21
(Modeling Node: DP-1)	(4.739)	(11.094)	(14.856)	(22.427)
D.A. #2 Total	102.83	194.44	244.25	340.23
(Modeling Node: DP-2)	(8.360)	(16.295)	(20.729)	(29.409)
D.A. #3 Total	24.90	65.53	89.66	137.79
(Modeling Node: DP-3)	(2.938)	(7.376)	(10.061)	(15.524)
Total Offsite Runoff	154.04	319.89	415.86	607.60
(Modeling Node: ET)	(16.037)	(34.765)	(45.645)	(67.360)

<u>Table IX – Existing Conditions Peak Runoff Rates (& Volumes Ac-ft)</u>

Refer to Appendix D for detailed calculations and hydrologic analysis report print-outs.

E. <u>Proposed Conditions Hydrologic Analysis Results</u>

The results of the proposed condition hydrologic analysis are shown on the following table:

Drainage Area	1-Year Rate (cfs) (Vol., Ac-ft)	10-Year Rate (cfs) (Vol., Ac-ft)	25-Year Rate (cfs) (Vol., Ac-ft)	100-Year Rate (cfs) (Vol., Ac-ft)
D.A. #1A Total	24.42	61.72	94.15	158.96
(Modeling Node: DP-1)	(4.321)	(9.882)	(13.074)	(19.402)
D.A. #2A Total	64.21	118.34	147.81	204.68
(Modeling Node: 2AT)	(4.993)	(9.581)	(12.130)	(17.111)
D.A. #2D Total	43.13	73.65	81.21	113.36
(Modeling Node: 2DT)	(2.345)	(4.235)	(5.277)	(7.304)
D.A. #2 Total	101.88	193.21	236.58	335.55
(Modeling Node: DP-2)	(9.921)	(18.824)	(23.780)	(33.468)
D.A. #3A Total	17.50	45.25	62.85	98.15
(Modeling Node: 3AT)	(3.427)	(7.996)	(10.673)	(16.009)
D.A. #3B Total	4.91	13.28	18.27	28.27
(Modeling Node: 3B)	(0.391)	(1.013)	(1.393)	(2.172)
D.A. #3 Total	21.61	56.47	78.16	123.65
(Modeling Node: DP-3)	(3.817)	(9.009)	(12.066)	(18.201)
Total Offsite Runoff	125.79	263.17	355.68	541.90
(Modeling Node: PT)	(18.060)	(37.715)	(48.920)	(71.071)

<u>Table X – Proposed Conditions Peak Runoff Rates (& Volumes Ac-ft)</u>

Refer to Appendix D for detailed calculations and hydrologic analysis report print-outs.

F. Comparison of Total Existing and Proposed Peak Runoff Rates (& Volumes Ac-ft)

Table XI provides a comparison of the total existing and proposed conditions peak runoff rates and volumes for the project runoff.

Condition	1-Year	10-Year	25-Year	100-Year
Condition	(cfs)	(cfs)	(cfs)	(cfs)
	154.04	319.89	415.86	607.60
Existing Conditions	(16.037)	(34.765)	(45.645)	(67.360)
	125.79	263.17	355.68	541.90
Proposed Condition	(18.060)	(37.715)	(48.920)	(71.071)
	18%	18%	14%	11%
Percent (%) Reduction	(+2.023)	(+2.950)	(+3.275)	(+3.711)

<u>Table XI – Total Project Runoff</u>

The results show that the proposed stormwater management practices will reduce the proposed condition peak runoff rates from the project areas to below existing conditions.

The following table provides a comparison of the existing and proposed conditions peak runoff rates and volumes for the total offsite runoff from the project area which includes the consideration of offsite areas located outside of the project boundary that sheet drain to the project.

G. Comparison of Existing and Proposed Peak Runoff Rates (& Volumes Ac-ft) by Discharge Point

The following tables provide a comparison of the existing and proposed conditions peak runoff rates and volumes for the total offsite runoff from the project area by discharge point.

Condition	1-Year	10-Year	25-Year	100-Year
Condition	(cfs)	(cfs)	(cfs)	(cfs)
	35.65	80.09	106.13	162.21
Existing Conditions	(4.739)	(11.094)	(14.856)	(22.427)
	24.42	61.72	94.15	158.96
Proposed Condition	(4.321)	(9.882)	(13.074)	(19.402)
Dercent (%) Poduction	32%	23%	11%	2%
Percent (%) Reduction	(-0.418)	(-1.212)	(-1.782)	(-3.025)

Discharge Point #1 Total – Rush Creek Tributary

The peak runoff rate and overall runoff volume to Discharge Point #1A, Rush Creek tributary is reduced as compared with existing conditions for each of the storm events.

Condition	1-Year	10-Year	25-Year	100-Year
Condition	(cfs)	(cfs)	(cfs)	(cfs)
	102.83	194.44	244.25	340.23
Existing Conditions	(8.360)	(16.295)	(20.729)	(29.409)
	101.88	193.21	236.58	335.55
Proposed Condition	(9.921)	(18.824)	(23.780)	(33.468)
Deveent (%) Deduction	1%	1%	3%	1%
Percent (%) Reduction	(1.561)	(2.529)	(3.051)	(4.059)

Discharge Point #2 Total – Smokes Creek

The peak runoff rate to Discharge Point #2: Smokes Creek is reduced to just below existing conditions for each of the analyzed storm events. There is a runoff volume increase from existing conditions as is expected in sites with low-infiltration capacity soils. The Creek is a waterbody with an established floodplain and conveyance capacity. The attenuated peak runoff rate will allow this waterbody to convey the additional volume in a manner mimicking existing conditions. The summary of the impact to the receiving water is limited to the project boundaries and scope of the study performed.

Condition	1-Year	10-Year	25-Year	100-Year
Condition	(cfs)	(cfs)	(cfs)	(cfs)
	14.57	37.13	50.40	76.73
Existing Conditions	(1.750)	(4.296)	(5.824)	(8.919)
	17.50	45.25	62.85	98.15
Proposed Condition	(3.427)	(7.996)	(10.673)	(16.009)
	-20%	-22%	-25%	-28%
Percent (%) Reduction	(1.677)	(3.700)	(4.849)	(7.090)

Discharge Point #3A Total – DOT Pond

The peak runoff rate to the pond from direct discharge via the existing private storm sewer conveying ECC campus drainage will increase because runoff is diverted away from the storm sewer system in the right-of-way. Refer to table "Discharge Point #3 Total" to see that there is a net reduction in the peak runoff rate to the existing offsite pond.

Condition	1-Year	10-Year	25-Year	100-Year
	(cfs)	(cfs)	(cfs)	(cfs)
Evicting Conditions	10.44	28.71	39.68	61.73
Existing Conditions	(1.188)	(3.080)	(4.237)	(6.605)
	4.91	13.28	18.27	28.27
Proposed Condition	(0.391)	(1.013)	(1.393)	(2.172)
Deveent (%) Deduction	53%	54%	54%	54%
Percent (%) Reduction	(-0.797)	(-2.067)	(-2.844)	(-4.433)

Discharge Point #3B Total – Southwestern Blvd/DOT Pond

The peak runoff rate to the pond via the existing public storm sewer system in the right-of-way will be reduced for each of the storm events. Refer to table "Discharge Point #3 Total" to see that there is a net reduction in the peak runoff rate to the existing offsite pond.

Condition	1-Year	10-Year	25-Year	100-Year
Condition	(cfs)	(cfs)	(cfs)	(cfs)
	24.90	65.53	89.66	137.79
Existing Conditions	(2.938)	(7.376)	(10.061)	(15.524)
	21.61	56.47	78.16	123.65
Proposed Condition	(3.817)	(9.009)	(12.066)	(18.201)
	13%	14%	13%	10%
Percent (%) Reduction	(0.879)	(1.633)	(2.005)	(2.677)

Discharge Point #3 Total – Southwestern Blvd/DOT Pond

For Discharge Point #3 receiving point; the existing offsite pond, there will be a decrease in the discharge rate to the pond for each of the storm events. The pond outlet structure and design is assumed to be based on the conveyance of peak runoff rates. Therefore, a reduction in the inflow peak rate should not negatively impact the pond's performance. There is a runoff volume increase for each of the storm events. When combined with peak rate attenuation, the volume should pass through the downstream entities at an acceptable manner mimicking existing conditions till a large downstream waterbody is reached. Sites with minimal infiltration capacity commonly result in a runoff volume increase however this volume is received by a waterbody that can convey this additional volume to Lake Erie at a lower rate thus mimicking existing conditions. The summary of the impact to the receiving water is limited to the project boundaries and scope of the study performed.

XVIII. Post-Construction Stormwater Management Performance and Sizing

A. <u>Proposed Post-Construction Stormwater Management Practices</u>

The stormwater management facilities proposed to mitigate each of the projects are:

Bioretention Facilities

A total of six (6) separate bioretention facilities are proposed to serve the project and receive stormwater runoff from portions of the new parking areas. Along with the standard surface and subsurface layers, the bioretention facilities will also consist of stilling basins for pretreatment, a spillway to bypass overflows, and an underdrain located in the upper portion of the subsurface gravel layer of the footprint to promote infiltration. Discharges and overflows from the bioretention system will be directed to the downstream stormwater pond.

The bioretention facilities are considered standard practices and designed in accordance with the NYSSMDM Bioretention Facility Practice with underdrain (F-5). This practice provides runoff reduction volume and water quality volume.

Wet Ponds

Two (2) wet ponds are proposed to receive runoff from parking areas west of Abbott Road and discharge from upstream bioretention areas. The wet ponds consist of two cells for permanent retention; a forebay and deep pool, approximately 4-6 ft in depth. Both ponds will have an outlet

structure and downstream piping to attenuate peak discharge rates and convey it to a downstream storm sewer system.

The wet ponds are considered standard practices and designed in accordance with the NYSSMDM Wet Pond Practice (P-2). This practice provides water quality volume, channel reduction volume, and peak rate attenuation.

Underground Detention Chambers

An underground chamber system is designed to provide detention volume to runoff captured in the storm sewer system. An outlet structure from the chamber system will allow runoff rate attenuation to the downstream storm piping.

The underground detention chambers are not considered a treatment practice and only provide peak rate attenuation.

Hydrodynamic Water Quality Units

These unit located underground in a vault or chamber are designed to provide mechanical sediment removal from runoff in a stormwater conveyance system through a system of swirling and baffling. They are proprietary units designed by the manufactures to the tributary drainage area and percent impervious area.

The hydrodynamic Water Quality Units are not considered an alternative treatment practice and only provide water quality volume to redevelopment areas.

Impervious Cover Reduction w/ Soil Restoration

Existing impervious area will be demolished and replaced with pervious lawn areas. Soil restoration practices may be used in these areas to rejuvenate the soils and recapture some of their potential to absorb stormwater runoff.

Impervious cover reduction with soil restoration provides water quality volume to only redevelopment areas where applicable.

Refer to the site maps/construction drawings for the specific location and size of each postconstruction stormwater management practice.

B. <u>Runoff Reduction Volume</u>

Runoff Reduction Volume (RRv) is the reduction of the total Water Quality Volume by application of green infrastructure techniques and stormwater management practices to replicate predevelopment hydrology. The goal is RRv is always to reduce 100% of the water quality volume through infiltrating practices. This is not always possible in sites with infiltration restrictions. New development projects must, at a minimum, reduce a percentage of the runoff from impervious areas based on the site soils meeting the required minimum runoff reduction volume quantity. The required and provided RRv was separated by Discharge Point. The NYSDEC Green Infrastructure (GI) Worksheet was used to calculate the required and provided RRv applicable to the new development portions of the project. Refer to Appendix D for a copy of this worksheet.

Discharge Point #1 – Rush Creek Tributary

This portion of the project will include ± 16.0 -acres of new impervious area over existing pervious ground. This impervious area is in a 16.00-acre drainage area which is considered new development and subject to Runoff Reduction Volume (RRv) requirements. The Water Quality Volume required for this area is 55,169 ft³ (1.267 Ac-ft). For 100% of the area having HSG D (S=0.2), the resulting

minimum RRv is 11,034 ft³. Bioretention facilities, tree planting, filter strips all provide RRv. For ease of showing compliance with the requirements, only bioretention facilities are counted as contributing towards providing the required RRv.

Practice	Contributing Area (Ac)	Contributing Imperv. Area (Ac)	RRv Provided (ft ³)	RRv Provided (Ac-ft)
Bio B-1	5.40	4.52	6,336	0.145
Bio B-2	6.75	4.67	6,720	0.154
Bio B-3	5.32	4.09	5,760	0.132
Bio B-4	2.57	2.03	2,880	0.066
Total	20.05	15.31	21,696	0.498

The following practices were used to provide RRv:

The provided RRv exceeds the minimum required RRv but does not completely reduce the WQv from new development for Discharge Point #1. The remaining 33,473 ft³ (0.768 Ac-ft) of required WQv must be provided through a standard practice.

Discharge Point #2 – South Branch Smokes Creek

This portion of the project will include 1.37-acres of new impervious area over existing pervious ground. This impervious area is in a 5.00-acre drainage area which is considered new development and subject to Runoff Reduction Volume (RRv) requirements. The Water Quality Volume required for this area is 5,373 ft³ (0.123 Ac-ft). For 14% of the area having HSG C (S=0.3) and 86% having HSG D (S=0.2), the resulting minimum RRv is 1,010 ft³. A bioretention facility, tree planting, filter strips all provide RRv. For ease of showing compliance with the requirements, only the bioretention facility are counted as contributing towards providing the required RRv.

The following practice was used to provide RRv:

Practice	Contributing Area (Ac)	Contributing Imperv. Area (Ac)	RRv Provided (ft ³)	RRv Provided (Ac-ft)
Bio B-6	2.98	2.58	3,600	0.083

The provided RRv exceeds the minimum required RRv but does not completely reduce the WQv from new development for Discharge Point #2. The remaining 1,773 ft³ (0.959 Ac-ft) of required WQv must be provided through a standard practice.

Discharge Point #3 – Rush Creek / Existing Offsite Pond / Southwestern Blvd

This portion of the project will include 12.75-acres of new impervious area over existing pervious ground. This impervious area is in a 13.00-acre drainage area which is considered new development and subject to Runoff Reduction Volume (RRv) requirements. The Water Quality Volume required for this new development area is 44,017 ft³ (1.010 Ac-ft). For 100% of the area having HSG D (S=0.2), the resulting minimum RRv is 8,794 ft³. A bioretention facility, tree planting, filter strips all provide RRv. For ease of showing compliance with the requirements, only the bioretention facility are counted as contributing towards providing the required RRv.

The following practice was used to provide RRv:

Practice	Contributing Area (Ac)	Contributing Imperv. Area (Ac)	RRv Provided (ft ³)	RRv Provided (Ac-ft)
Bio B-5	14.94	11.59	3,360	0.077

The provided RRv is below the minimum required RRv for this discharge point however the entire project meets the total RRv requirements because other areas provide excess RRv. The remaining 40,657 ft³ (0.933 Ac-ft) of required WQv must be provided through a standard practice.

Table XII provides a summary of the total required and provided RRv.

Discharge Point	Reqr'd WQv (New Development) (Ac-ft)	Min. Reqr'd RRv (Ac-ft)	Provided RRv (Ac-ft)
DP #1	1.267	0.253	0.498
DP #2	0.123	0.023	0.083
DP #3	1.010	0.202	0.077
Total	2.400	0.478	0.658

Table XII - Total RRv Required & Provided

The total RRv provided for the project exceeds the minimum required RRv but does not completely reduce the WQv for new development areas. The project contains new impervious areas that are not directed towards RRv facilities. These are mainly new parking areas at the north and south ends of the site. It is not feasible to direct all impervious portions of the project to an RRv practice for the following reasons:

- Large portions of the site is existing with an existing storm sewer system that collects runoff from this area. Re-using the existing storm sewer infrastructure limits the extent to which green infrastructure practices may be applied but reduces the overall disturbance impact of the project.
- The site has very shallow depth to bedrock and many green practices require greater depth to bedrock to use. Surface practices generally are only capable of receiving a very small adjacent area and the size of this project generally prohibits that.
- Portions of the site have shallow depth to groundwater which restricts the extent to which green
 practices may be used.
- The on-site soils are mainly clay and have been previously developed or compacted therefore the soils do not have sufficient infiltration capacity.
- The project does not contain a lot of clean runoff areas such as rooftops which can generally be directed to a shallow treatment practice. The stadium roof will be part of the subsurface collection system which is too deep to utilize green practices.

Practice	Discussion	
Preservation of Undisturbed Areas	Undisturbed (non-lawn) areas have been avoided for development	
	to the greatest extent possible.	
Preservation of Buffers	Buffer areas of sensitive environmental areas were avoided.	
Reduction of Clearing and Grading	Clearing and Grading is contained to development areas and outside	
	buffers and sensitive environmental areas.	
Locating Development in Less Sensitive Areas	Development is located outside of sensitive environmental areas.	
Open Space Design	Not applicable for this type of development	
Soil Restoration	This practice will be applied to applicable areas.	
Roadway Reduction	Reduction to the greatest extent possible provided.	
Sidewalk Reduction	Reduction to the greatest extent possible provided.	
Driveway Reduction	Reduction to the greatest extent possible provided.	
Cul-de-sac Reduction	Not applicable for this type of development	
Building Footprint Reduction	Reduction to the greatest extent possible provided.	
Parking Area Reduction	Reduction to the greatest extent possible provided.	
Vegetative Swale	These are used for pre-treatment but provide too little treatment to	
	an extent practical for meeting goals.	
Conservation of Natural Areas	Natural areas within sensitive environmental areas were maintained	
	but are outside the RRv area.	
Sheetflow to Riparian Buffers or	Due to downstream flooding concerns, runoff to riparian buffer	
Filter Strips	locations was required to be captured and detained.	
Tree Planting/Tree Pit	Could not be done to an extent practical for meeting goals.	
Stream Daylighting	Not applicable, site does not contain restricted streams	
Disconnected Rooftop Runoff	Stadium rooftop runoff is tied into stadium subsurface drainage	
Rain Gardens	system that is too deep to use these practices. Rooftop size exceeds	
Green Roofs	the allowance for these practices and/or practices are not feasible	
Stormwater Planters	for application to a stadium building	
Rain Barrels and Cisterns	Graywater demand does not exceed expected rainfall	
Porous Pavement	Porous pavement is not suitable for this use because vehicles may be	
	heavier trucks and salting operations may be required in the winter for de-icing.	

C. <u>Water Quality Volume</u>

Water Quality Volume (WQv) is a calculation of treatment (sediment and phosphorus removal) provided by stormwater management practices. For new development projects, this must be provided through a combination of "green" practices with RRv capacity and standard practices. For redevelopment areas where existing WQv is provided in a standard practice, the same quantity of WQv must continue to be provided. Redevelopment areas which do not have existing WQv provided by a standard practice are eligible to comply with the Chapter 9 Redevelopment Standards of the NYSDEC Stormwater Management Design Manual. This chapter states that WQv for redevelopment areas is met when existing impervious areas are reduced by 25%, a minimum of 25% of the redevelopment WQv is provided in standard practices, or an equivalent combination of these requirements are met. The required and provided WQv was separated by Discharge Point.

Discharge Point #1 – Rush Creek Tributary

The required Water Quality Volume (WQv) associated with the new development portion of the project to discharge point #1 is 55,169 ft³. Approximately 39% of this volume is provided as RRv. The remaining volume is provided in standard practices. For the wet pond, only permanent retention areas were considered towards the WQv. The following practices were used to provide WQv for the new development portion of the project:

Practice	WQv (ft ³)
RRv (various)	21,696
Bioretention (B-1:4) (Non-RRv)	31,944
Wet Pond (P-1)	4,500
Total	58,140

This volume meets and exceeds the required WQv for new development by 2,970 ft³. The remaining portions of the project are considered redevelopment which does not have existing WQv applied in a standard practice and this extra WQv may be applied to meeting those requirements.

The redevelopment portion of the project to discharge point #1 includes 5.13-acres of impervious asphalt and gravel surfaces which will be removed and replaced with pervious area and 11.11-acres of existing impervious areas to remain. The initial WQv required for redevelopment is 63,742 ft³. This volume will be provided through a combination of impervious cover reduction and standard practices.

The percentage of impervious cover reduction for the redevelopment portion of the project is 31.6%. Since the percentage of reduction is greater than 25% the water quality volume requirements associated with redevelopment for discharge point #1 of the project are considered to be met.

Classification	Required WQv (ft ³)	
New Development	55,169	
Redevelopment – Initial WQv	63,742 (25%=15,936)	
Redevelopment – Impervious Cover Reduction	15.026	
Redevelopment – Standard Practice	15,936	
Total Required WQv	71,105 (1.632 Ac-ft)	

The following is a summary of the required WQv:

The following is a summary of the practices used to provide WQv:

Practice	WQv as RRv (ft ³)	WQv as Non-RRv (ft ³)	Total Prvd'd WQv (ft ³)	Reqr'd WQv (ft ³)
Bio B-1	6,336	9,408	15,744	-
Bio B-2	6,720	9,755	16,475	-
Bio B-3	5,760	8,561	14,321	-
Bio B-4	2,880	4,219	7,099	-
Wet Pond (P-1)	-	4,500	4,500	-
Total WQv in Stnd'd Practice	22,176	53,437	58,140	55,169
Exist. Imperv. Reduction	-	-	15,936	-
Total Prvd'd WQv	-	-	74,075 (1.701 Ac-ft)	71,105 (1.632 Ac-ft)

Discharge Point #2 – South Branch Smokes Creek

The required Water Quality Volume (WQv) associated with the new development portion of the project to discharge point #2 is 5,373 ft³. Approximately 67% of this volume is provided as RRv. The remaining volume is provided in standard practices.

The following practices were used to provide WQv for the new development portion of the project:

Practice	WQv (ft ³)
RRv (<i>B-6))</i>	3,600
Bioretention, Non-RRv (B-6)	5,370
Total	8,970

This volume meets and exceeds the required WQv for new development by 3,597 ft³. The remaining portions of the project are considered redevelopment without existing WQv provided and this extra WQv may be applied to meeting those requirements.

The redevelopment portion of the project to discharge point #2 includes 3.57-acres of impervious asphalt and gravel surfaces which will be removed and replaced with pervious area and 76.18-acres of existing impervious areas to remain. The initial WQv required for redevelopment is 255,288 ft³. This volume will be provided through a combination of impervious cover reduction, standard practices and alternative practice.

The percentage of impervious cover reduction for the redevelopment portion of the project is 4.5%. The remaining 3,596 ft³ of WQv provided in standard practices which may be attributed towards redevelopment is 1.4% of the initial WQv for redevelopment. The total percentage of the initial redevelopment WQv provided from standard practices and impervious cover reduction is 5.9%. Since this is less than 25%, alternative practice are required to be used to meet the remaining requirement. The remaining 19.1% from the initial 25% goal is multiplied by 3 for calculating the required WQv from alternative practices. This results in 57.4% of the initial WQv for redevelopment is required from standard practices which equals 146,422 ft³. This will be provided through several hydrodynamic water quality units.

Classification	Required WQv (ft ³)	
New Development	5,373	
Redevelopment – Initial WQv		255,288
		(5.9%=15,015)
	25% -	5.9% = 19.1% x 3 = 57.4%
		(57.4%=146,422)
Redevelopment – Impervious Cover	11,419 (4.5% of Initial WQv)	15,015 (5.9% of Initial
Reduction	11,419 (4.5% b) million wQV)	
Redevelopment – Standard Practice	3,596 (1.4% of Initial WQv)	
Redevelopment – Alternative Practice	146,422 (57.4% of Initial WQv	
Total Required WQv	166,810 (3.829 Ac-ft)	

The following is a summary of the required WQv:

Practice	WQv as RRv (ft ³)	WQv as Non- RRv (ft ³)	Total Prvd'd WQv (ft ³)	Reqr'd WQv (ft³)
Bio B-6	3,600	5,370	8,970	5,373
Exist. Imperv. Reduction	-	11,419	11,419	-
Total WQv in Stnd'd Practice	3,600	16,789	20,389	20,388 (5,373 + 15,015)
WQU #1 (DA #2B)	-	40,941	40,941	
WQU #2 (DA #2D	-	59,680	59,680	-
WQU #3 (Portions of DA #2A)	-	46,646	46,646	
Total WQv in Alt. Practice		147,267	147,267	146,422
Total WQv	-	-	167,655 (3.849 Ac-ft)	166,810 (3.829 Ac-ft)

The following is a summary of the practices used to provide WQv:

Discharge Point #3 – Rush Creek / Existing Offsite Pond

The required Water Quality Volume (WQv) associated with the new development portion of the project to discharge point #3 is 44,017 ft³. Approximately 8% of this volume is provided as RRv. The remaining volume is provided in standard practices.

Under existing conditions, the drainage in this discharge point is direct to an offsite existing stormwater pond which is considered equivalent to a standard practice wet pond. Though the design document for that pond is not available, in conservations with the NYSDOT is was discussed that the pond was designed to provide WQv to the contributing area. The portion of the existing drainage area to the pond in the project analysis area is 51.30-acres with an impervious area of 16.71-acres (32.6%). Using the formula in Chapter 4 of the manual and a 90% rainfall volume of 1.0-inches, the existing offsite pond is expected to provide 63,906 ft³ (1.467 Ac-ft) of WQv to treat this area. The new drainage area to the pond associated with redevelopment is 42.98-acres with an impervious area of 12.94-acres (30%). The required WQv associated with the redevelopment area is 50,063 ft³. The excess WQv in the existing pond resulting from existing impervious cover reduction may be applied to meeting the new development WQv requirements.

Practice	WQv (ft ³)
RRv <i>(B-5))</i>	3,360
Bioretention, Non-RRv (B-5)	5,018
Wet Pond (P-2)	21,796
Existing Offsite Pond	63,906
Total	94,080

The following practices were used to provide WQv for the project:

The following is a summary of the required WQv:

Classification	Required WQv (ft ³)
New Development	44,017
Redevelopment – Initial WQv	50,063 (100% in standard practice)
Total Required WQv	94,080 (2.160 Ac-ft)

The following is a summary of the practices used to provide WQv:

Practice	WQv as RRv (ft ³)	WQv as Non- RRv (ft ³)	Total Prvd'd WQv (ft ³)	Reqr'd WQv (ft³)
Bio B-5	3,360	5,018	8,378	
Wet Pond P-2	-	21,796	21,796	-
Existing Pond	-	63,906	63,906	
Total WQv	-	-	94,080 (2.160 Ac-ft)	94,080 (2.160 Ac-ft)

Table XIII provides a summary of the total required and provided RRv.

Discharge Point	Reqr'd WQv (Ac-ft)	Provided WQv (Ac-ft)
DP #1	1.632	1.701
DP #2	3.829	3.849
DP #3	2.160	2.160
Total	7.621	7.710

Table XIII –	Total	WQv	Require	d & Pr	ovided
Table All -	Total	vv Qv	nequire	uœii	ovideu

The total WQv provided for the project exceeds the required WQv and is provided in an appropriate standard or alternative practice dependent on the origination source from a new development area, redevelopment area with existing standard practice treatment, or redevelopment area subject to the reduced redevelopment treatment requirements. Refer to Appendix D for detailed calculations of the required and provided WQv.

D. Channel Protection Volume

Stream Channel Protection Volume (CPv) is a requirement to provide 24-hour extended detention of the one-year, 24-hour storm event remaining from runoff reduction volume in order to protect stream channels from erosion. For redevelopment, this requirement is considered to be met if the 1-yr post-developed storm is detained to pre-development peak runoff rates and velocities.

The following table provides a summary of the calculated total required CPv;

Classification	Discharge Pt #1 Reqr'd CPv (Ac-ft)	Discharge Pt #2 Reqr'd CPv (Ac-ft)	Discharge Pt #3 Reqr'd CPv (Ac-ft)
New Development Areas	0.987	0.308	0.802
Redevelopment Areas	0*	0*	0*
Total Required CPv:	0.987	0.308	0.802
Total Required CPv:	2.097		

*Redevelopment Area are considered 0 because requirements are met through peak rate attenuation.

CPv is provided by providing RRv and attenuating the 1-year design storm outfall approximately 24-hours from existing conditions for new development runoff.

Practice	Discharge Point #1 Provd'd CPv (Ac-ft)	Discharge Point #2 Provd'd CPv (Ac-ft)	Discharge Point #3 Provd'd CPv (Ac-ft)
Wet Pond	1.000	-	1.085
RRv	0.498	0.083	0.077
Total Provided CPv:	1.498	0.083	1.162
Total Provided CPv (DP#1, #2 & #3):		2.743	

The following table provides a summary of the total provided CPv;

The total CPv provided exceeds the required CPv. Refer to Appendix D for detailed calculations of the required and provided CPv.

E. Overbank Flood Control

Overbank Flood Control (Qp) is a requirement to attenuate the post-development 10-year, 24-hour peak discharge rate to pre-development rates to prevent an increase in the frequency and magnitude of out-of-bank flooding. This requirement is met through the proposed stormwater management facilities. Refer to IV. Existing and Proposed Hydrologic Analysis.

F. Extreme Flood Control

Extreme Flood Control (Qf) is a requirement to attenuate the post-development 100-year, 24-hour peak discharge rate to pre-development rates to prevent the increases risk of flood damage from large storm events, maintain the boundaries of the predevelopment 100-year floodplain, and protect the physical integrity of stormwater management practices. This requirement is met through the proposed stormwater management facilities. Refer to IV. Existing and Proposed Hydrologic Analysis.

G. Post-Construction Stormwater Management Practices Description

Six (6) post-construction stormwater management practices are proposed to provide both runoff reduction volume (RRv) and water quality volume (WQv). These are Bioretention Facilities #1 through #6. These practices consist of pretreatment areas and then an area designed to promote groundwater filtering. This portion of the practice contains a subsurface planting soil layer followed by a gravel layer. Underdrain is used in the gravel layer to collect runoff which cannot be accepted as infiltration by the native soils. The surface area of the practice is designed to detain a maximum 6-inch deep pool before bypassing or providing an overflow for additional runoff.

Practice:	Bioretention Facility #1 (B-1)	Bioretention Facility #2 (B-2)
Pretreatment	Forebay (3,938 ft ³ min. – 25% of WQv)	Forebay (4,110 ft ³ min. – 25% of WQv)
Pretreatment – Top / Bottom Elev. (ft)	TBD	TBD

Refer to the following tables for details on the bioretention facility design:

Top of Practice Elevation (ft)	751.25	751.50
Infiltration Surface – Elev. (ft) & Surface Area	749.25 13,200 s.f.	749.50 15,000 s.f.
Planting Layer – Depth Top/Bottom Elev. (ft)	2.5-ft 749.00 / 746.50	2.5-ft 749.25 / 746.75
Gravel Layer – Depth Top/Bottom Elev. (ft)	0.67-ft 746.50 – 745.83	0.67-ft 746.75 – 746.08
Side Slopes (h:v) (Practice & Pretreatment)	2:1	2:1
Avg. Ht. of Ponding Spillway Elev. (ft) <i>(Primary Grate)</i>	0.5-ft 749.75	0.5-ft 750.00
Underdrain	6-inch diameter @ 0.2% slope	6-inch diameter @ 0.2% slope
Secondary Outlet Components	Culvert (Primary): 87' – 12" HDPE @ 0.29%, Inv:747.00 Grate (Secondary): TG:750.75 Culvert (Secondary): 45' – 12" HDPE @ 3.6%, Inv:744.13	Culvert (Primary): 105' – 12" HDPE @ 0.24%, Inv:747.25 Grate (Secondary): TG:750.75 Culvert (Secondary): 130' – 12" HDPE @ 6.1%, Inv:738.00
Rock Spillway Elev. (ft)	751.00	751.00
& Spillway Width (ft)	10.0'	10.0'
Assumed Groundwater Elev. (ft)	TBD	TBD
1-Yr Ponding Elev.	749.79	750.07
10-Yr Ponding Elev.	750.16	750.54
25-Yr Ponding Elev.	750.56	750.87
100-Yr Ponding Elev.	751.16	751.27

Practice:	Bioretention Facility #3 (B-3)	Bioretention Facility #4 (B-4)
Pretreatment	Forebay (3,581 ft ³ min. – 25% of WQv)	Forebay (1,775 ft ³ min. – 25% of WQv)
Pretreatment – Top / Bottom Elev. (ft)	TBD	TBD
Top of Practice Elevation (ft)	752.00	755.00
Infiltration Surface – Elev. (ft) & Surface Area	750.00 12,000 s.f.	753.00 6,000 s.f.
Planting Layer – Depth Top/Bottom Elev. (ft)	2.5-ft 751.75 / 749.25	2.5-ft 752.75 / 750.25

Gravel Layer – Depth	0.67-ft	0.67-ft
Top/Bottom Elev. (ft)	749.25 – 748.58	750.25 – 749.58
Side Slopes (h:v) (Practice & Pretreatment)	2:1	2:1
Avg. Ht. of Ponding	0.5-ft	0.5-ft
Spillway Elev. (ft) (Primary Grate)	750.50	753.50
Underdrain	6-inch diameter @ 0.2% slope	6-inch diameter @ 0.2% slope
	Culvert (Primary): 30' – 8"	Culvert (Primary): 230' – 12"
Secondary Outlet Components	HDPE @ 1.67%, Inv:746.50	HDPE @ 1.30%, Inv:746.50
Rock Spillway Elev. (ft)	751.50	754.50
& Spillway Width (ft)	10.0′	10.0'
Assumed Groundwater Elev. (ft)	TBD	TBD
1-Yr Ponding Elev.	749.79	753.75
10-Yr Ponding Elev.	750.16	754.09
25-Yr Ponding Elev.	750.56	754.33
100-Yr Ponding Elev.	751.16	754.74

Practice:	Bioretention Facility #5 (B-5)	Bioretention Facility #6 (B-6)
Pretreatment	Forebay (9,859 ft ³ min. – 25% of WQv)	Forebay (2,243 ft ³ min. – 25% of WQv)
Pretreatment – Top / Bottom Elev. (ft)	TBD	TBD
Top of Practice Elevation (ft)	743.00	763.00
Infiltration Surface – Elev. (ft) & Surface Area	740.50 7,000 s.f.	761.00 7,500 s.f.
Planting Layer – Depth Top/Bottom Elev. (ft)	2.5-ft 740.50 / 738.00	2.5-ft 761.00 / 758.50
Gravel Layer – Depth Top/Bottom Elev. (ft)	0.67-ft 738.00 – 737.33	0.67-ft 758.50 – 757.83
Side Slopes (h:v) (Practice & Pretreatment)	2:1	2:1
Avg. Ht. of Ponding Spillway Elev. (ft) <i>(Primary Grate)</i>	0.5-ft 741.00	0.5-ft 761.50
Underdrain	6-inch diameter @ 0.2% slope	6-inch diameter @ 0.2% slope
Secondary Outlet Components	Culvert (Primary): 170' – 18" HDPE @ 0.60%, Inv:737.00	Culvert (Primary): 100' – 12" HDPE @ 1.00%, Inv:758.00

Rock Spillway Elev. (ft)	742.50	762.00
& Spillway Width (ft)	10.0'	10.0'
Assumed Groundwater Elev. (ft)	TBD	
1-Yr Ponding Elev.	741.58	761.79
10-Yr Ponding Elev.	741.65	762.11
25-Yr Ponding Elev.	741.69	762.25
100-Yr Ponding Elev.	741.94	762.45

BIORETENTION - Standard Practice F-5			
Requirements Compliance			
6.4.2 Conveyance			
If runoff is delivered by storm pipe, design off- line.	Runoff is received to the practices by both sheet flow and storm pipes. A spillway		
Provide an overflow to pass volume beyond WQv. Use a flow regulator to divert WQv to practice and bypass larger flows. Equip with a minimum 4: perforated pipe underdrain in a gravel layer with a permeable	bypasses excessive runoff. An overflow weir spillway is provided for each facility Each facility sized to treat the entire drainage area to it. A minimum 4" diameter perforated underdrain is provided.		
filter fabric between gravel and filter media. Provide min. 2' separation from filter bottom to groundwater. 6.4.3. Pretreatment	The design is intended to provide this based on available subsurface information.		
Provide pretreatment equivalent to 25% of the WQv.	This is provided in the forebays.		
Required sedimentation basin area to meet equation	The facilities are sized using the NYSDEC GI Worksheet, see Appendix D.		
6.4.4. Treatment			
Size system to temporarily hold 75% of the WQv prior to filtration.	System is sized in accordance with NYSDEC GI Worksheet.		
Filter media to consist of medium sand.	System complies, refer to detail on Site Development Plans.		
Bioretention systems shall consist of the following treatment components: planting bed, mulch layer, and 6" deep ponding area. Soils shall meet manual.	It is our understanding the NYSDEC no-longer requires the mulch layer as this sometimes has adverse environmental impacts. The system does provide a planting bed in accordance with Fig. 6.19 and a 6" deep ponding area and soils meeting Appendix H.		
6.5.5. Landscaping			
Provide a dense and vigorous vegetative cover over contributing pervious areas prior to brining practice on-line.	This is specified on the plans and in this report.		

Provide a landscaping plan for bioretention areas.	This is provided in the Construction Drawings.
6.5.6. Maintenance	
A legally binding and enforceable maintenance agreement shall be executed between the facility and the owner.	This will be completed prior to the filing of the Notice of Termination.
Sediment shall be removed from stilling basin when it reaches 6" of accumulation. Restrict vegetation height to 18". Clean/repair outlet devices. Remove trash and debris. Remove silt from filter bed when accumulation exceeds 1". When filtering capacity diminishes, remove top few inches of discolored material and replace.	This will be specified in the maintenance agreement and the Long-Term Maintenance Plan.

Two (2) post-construction stormwater management practices are proposed to provide both water quality volume and peak runoff-rate reduction. This is a Wet Pond "P-1" and Wet Pond "P-2" which each consist of two cells of permanent pools of water referred to as a forebay and a deep pool. The practices contain an aquatic bench for treatment, detention storage volume, and an outlet structure to attenuate discharge rates. These practices have been designed to discharge to existing downstream storm sewers.

Practice:	Wet Pond (P-1)	Wet Pond (P-2)
Pretreatment	Forebay (TBD ft ³ – X% of WQv)	Forebay (TBD ft ³ – X% of WQv)
Pretreament – Top / Bottom Elev. (ft)	746.50 / 740.50	736.00 / 730.00
Deep Pool Volume	TBD c.f.	TBD c.f.
Deep Pool (Pond Bottom) Top / Bottom Elev. (ft)	746.50 / 740.50	736.00 / 730.00
Approx. Groundwater Elev.(ft)	TBD	TBD
Water Surface Elevation (ft)	746.50	736.00
Detention Volume	122,816 c.f.	177,873 c.f.
Side Slopes (h:v) (Practice & Pretreatment)	Above Water Surface: 4:1 Below Water Surface: 10- 15' wide aquatic bench at 10% followed by 2:1 to bottom	Above Water Surface: 4:1 Below Water Surface: 10- 15' wide aquatic bench at 10% followed by 2:1 to bottom

Top of Berm Elevation (ft)	751.00	741.00
		Culvert:220-ft of 24" @
	Culvert (Primary): 85-ft of	0.38%
Quitlet Components	30" @ 0.19%	24" sq. Grate Elev. = 738.75
Outlet Components	24" sq. Grate Elev.=748.75	18"(W)x6"(H) Orifice
	3"D Orifice Elev.=746.50	Elev.=737.65
		4"D Orifice Elev.=736.00
Emorgonov Spillwov	20-ft wide @ elev.:749.75,	20-ft wide @ elev.: 740.00,
Emergency Spillway	1:3 side slopes	1:3 side slopes
1-Yr Ponding Elev.	748.76	737.64
10-Yr Ponding Elev.	749.23	738.62
25-Yr Ponding Elev.	749.44	739.14
100-Yr Ponding Elev.	750.07	740.07

_, , , _ , ,			_
The following Tables s	how compliance of t	he nractices with th	e requirements.
The following fubics s	now compliance of t	the proceed with the	ie reguirements.

WET POND – Standard Pract. P-2			
Requirement	Compliance		
6.1.1 Feasibility			
Not to be located within jurisdictional waters,	Not located with wetland or 100-ft wetland		
including wetlands.	buffer.		
Determine if pond is a dam.	Maximum embankment is less than 6-ft which		
	falls below the threshold of a dam – verification		
	required with final design		
Avoid direction of hotspot runoff	Proposed land use is not hot spot.		
Provide 2' min. separation from groundwater in	Site is not located within a sole source aquifer.		
sole source aquifer areas.			
6.1.2 Conveyance			
Provide forebay at each inflow point unless less	A forebay is provided at the inlet		
than 10% of total design flow to pond.			
Modify the channel below a pond outfall to	A riprap spillway is used to meet this		
prevent erosion.	requirement.		
Use a stilling basin or outlet protection to reduce	The principal spillway connects to a downstream		
flow velocities from the principal spillway.	storm sewer system.		
6.1.3 Pretreatment			
Utilize a forebay sized to contain 10% of the WQv	Provide information to show compliance with		
and be 4-6 ft deep.	final design		
Design forebay with non-erosive outlet	A riprap spillway is provided to meet this.		
conditions.			
Provide direct access for maintenance.	The facility is accessible on all sides for		
	maintenance.		
Provide 100% of WQv in pretreatment for hot	N/A		
spot runoff in sole source aquifers			
6.1.4 Treatment			

Drovido water quality treatment 100% as a	This requirement is mot
Provide water quality treatment, 100% as a	This requirement is met.
permanent pool.	The approximate ratio is 2:1
Provide a minimum length to width ratio of 1.5:1	The approximate ratio is 2:1 <i>Provide information to show compliance with</i>
Provide a minimum surface area : drainage area	
of 1:100	final design
6.1.5 Landscaping	
Provide a 15-ft wide aquatic bench, with a max.	An aquatic bench is provided that has an average
depth of 18-inches below the water surface along	width of 10-15 ft and a max. depth of 18-inches.
the perimeter of all pools 4-ft or greater in depth.	The pond has side slopes of 4:1 to the water
Provide pond side slopes 4:1 or flatter or a safety	surface elevation.
bench.	This is succeived as the construction description
Provide landscaping plan for pond and buffer.	This is provided on the construction drawings.
Establish aquatic bench vegetation before	This is specified within this SWPPP and the plans.
bringing pond into service.	
Provide a buffer that extends 25-ft from the max.	This is complied with.
water surface elevation.	
Woody vegetation may not be planted or allowed	This requirement is noted within the
to grow within 15-ft of the toe of embankment	maintenance section of this report.
and 25-ft from the principal spillway structure.	
6.1.6 Maintenance	
Provide a legally binding and executable	This will be prepared and complied with before
agreement for pond maintenance with a	the Notice of Termination is filed.
responsible authority as condition of approval.	
Equip principal spillway with a removable trash	This is shown on the outlet structure detail in the
rack generally accessible from dry land.	Site Development Plans.
Sediment removal in the forebay shall occur	This is noted in the maintenance section of this
every 5-6 years or after 50% of the total forebay	report.
capacity is lost.	
All required safety elements must be inspected	This is noted in the maintenance section of this
and maintained on an annual basis, unless prior	report.
inspections indicate more frequent maintenance	
is required.	
All required maintenance elements must be	This is complied with and included in this report.
included in a comprehensive operation and	
maintenance plan.	
A maintenance right-of-way or easement shall	This will be completed prior to the Notice of
extend to the pond from a public or private road.	Termination submission.
A low flow orifice shall be provided, with the size	A 3-inch diameter low flow orifice is provided,
for the orifice sufficient to ensure that no	the design is per the DEC Manual to prevent
clogging shall occur.	clogging.
The riser shall be located within the	The riser is located within the embankment.
embankment.	
Provide access to the riser by lockable manhole	The outlet structure has a bolted frame which
covers and steps. The principal spillway opening	may be removed for access. The principal
	spillway is an existing storm sewer pipe.

should be fenced with pipe or rebar at 8-inch	
intervals for safety purposes.	

Except where local slopes prohibit this design,	The pond is equipped with a pond drain.
each pond shall have a drain pipe that can	
completely or partially drain the pond within 24	
hours.	
The WQv, ED outlet and the pond drain shall be	The low flow orifice is equipped with a valve
equipped with an adjustable gate valve. Locate	located inside of the outlet structure.
valve inside riser.	
Warning signs must be posted prohibiting	Warning signs will be posted post-construction
swimming, wading, and skating, warning of	and will be the responsibility of the owner.
possible contamination or pollution of pond	
water and indicating maximum depth of pond.	
The principal spillway opening shall not permit	The spillway is an existing pipe.
access by small children.	
· · · · · · · · · · · · · · · · · · ·	
When all safety and slope requirements cannot	All feasible safety requirements have been met.
be met, perimeter fencing is required at or above	
the maximum water surface level.	

One (1) post-construction stormwater management practice is proposed to provide just peak runoffrate reduction. This is an underground chamber detention system C-1). These are underground storage basins designed to temporarily retain runoff. A bypass structure upstream of the chambers will allow low flows to by-pass the chamber system and higher flows will be directed to it. An outlet structure is used to attenuate runoff from the chambers through an undersized orifice before it is discharged downstream. The total number of chambers and multi-stage outlet structure from the chamber system will be determined as detailed design progresses.

Refer to the following table for details on the chamber design:

Practice:	Chambers
Inflow Bypass Structure	0 – 70 cfs – bypasses chambers Greater than 70 cfs – to chambers
Chamber Manufacturer & Type (Chamber Dimensions)	ADS StormTech DC-780 (45.4"W x 30.0"H x 7.12'L = 46.2 cf)
Total Number (#) of Chambers (# in row x # of rows)	±144 – To Be Confirmed (12 in row x 12 rows)
Stone Base Size (L / W) (ft) & Inv. Elev. (ft)	715.65'L / 476.50'W Inv = 748.00 ft
Stone Base Depth & Camber Stone Cover Depth	9 inches & 6 inches
Overall Height of System (Top Elevation, ft)	2.75 Ft (751.75)
Stone Void Space	40%

Outlet Components	Culvert:165-ft of 24" @ 0.39%
1-Yr Ponding Elev.	748.00
10-Yr Ponding Elev.	748.37
25-Yr Ponding Elev.	749.44
100-Yr Ponding Elev.	751.54

One (1) post-construction stormwater management practice is proposed to provide just water quality volume and is considered an alternative practice. This is a proprietary water quality treatment unit approved by the NYSDEC for use on redevelopment projects. The unit is sized to treat the contributing drainage area and is equipped with a bypass for larger flows.

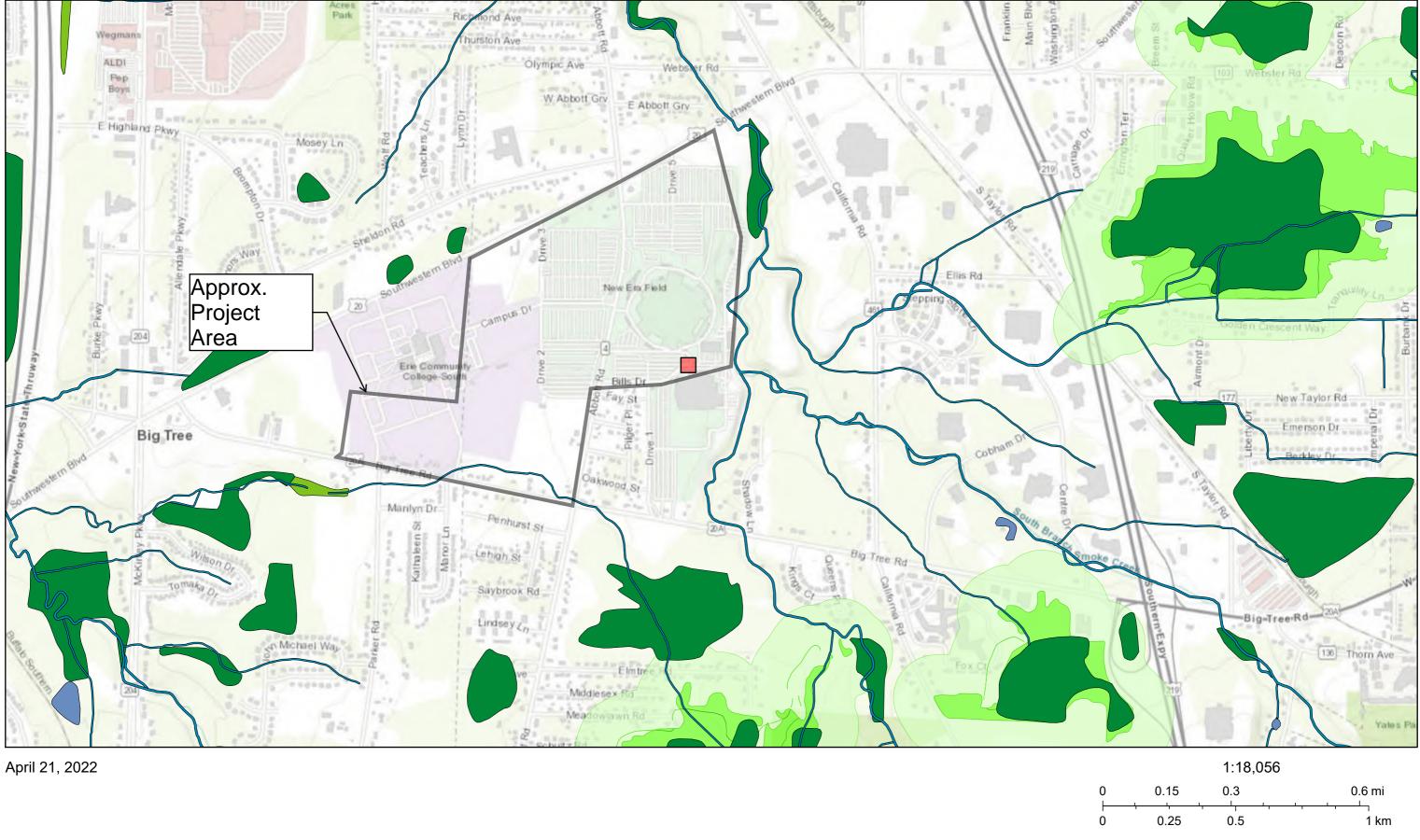
Practice:	D.A. Name	Drainage Area (Ac)	% Imperv.	Avail. WQv (cf)	Water Quality Unit
WQU #1	#2B	11.87	100%	40,941	To Be Determined
WQU #2	#2D	17.42	99%	59,680	To Be Determined
WQU #3	#2D	14.00	96%	46,646	To Be Determined

Refer to the following table for details on the chamber design:

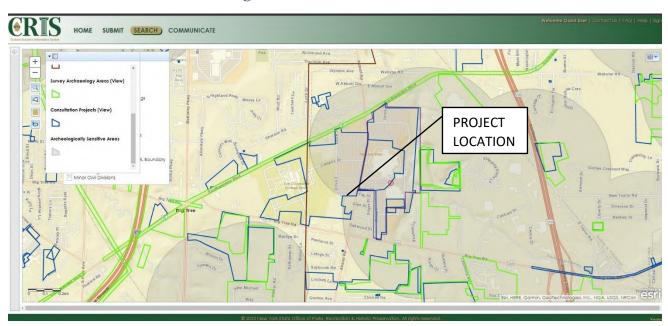
XIX. Intermediate Phase Drainage Conditions

To Be Completed with Final Design

Mapping



P4


Figure #1 - U.S.G.S. QUADRANGLE LOCATION MAP

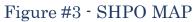


FIGURE #2: Environmental Resource Mapper

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

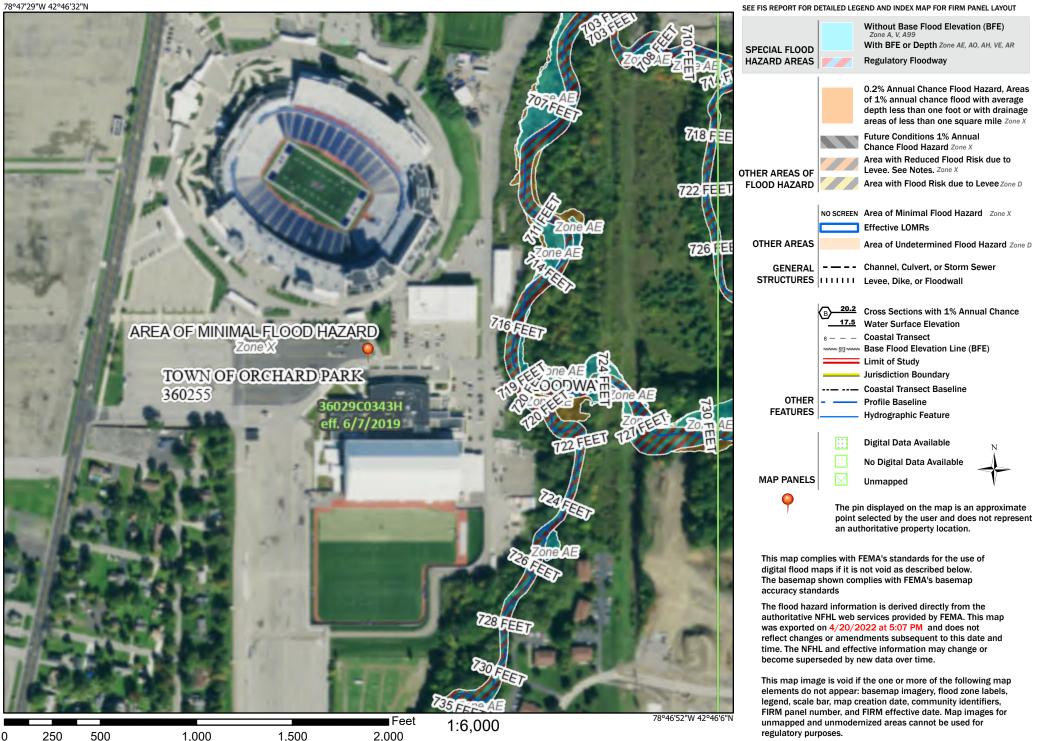
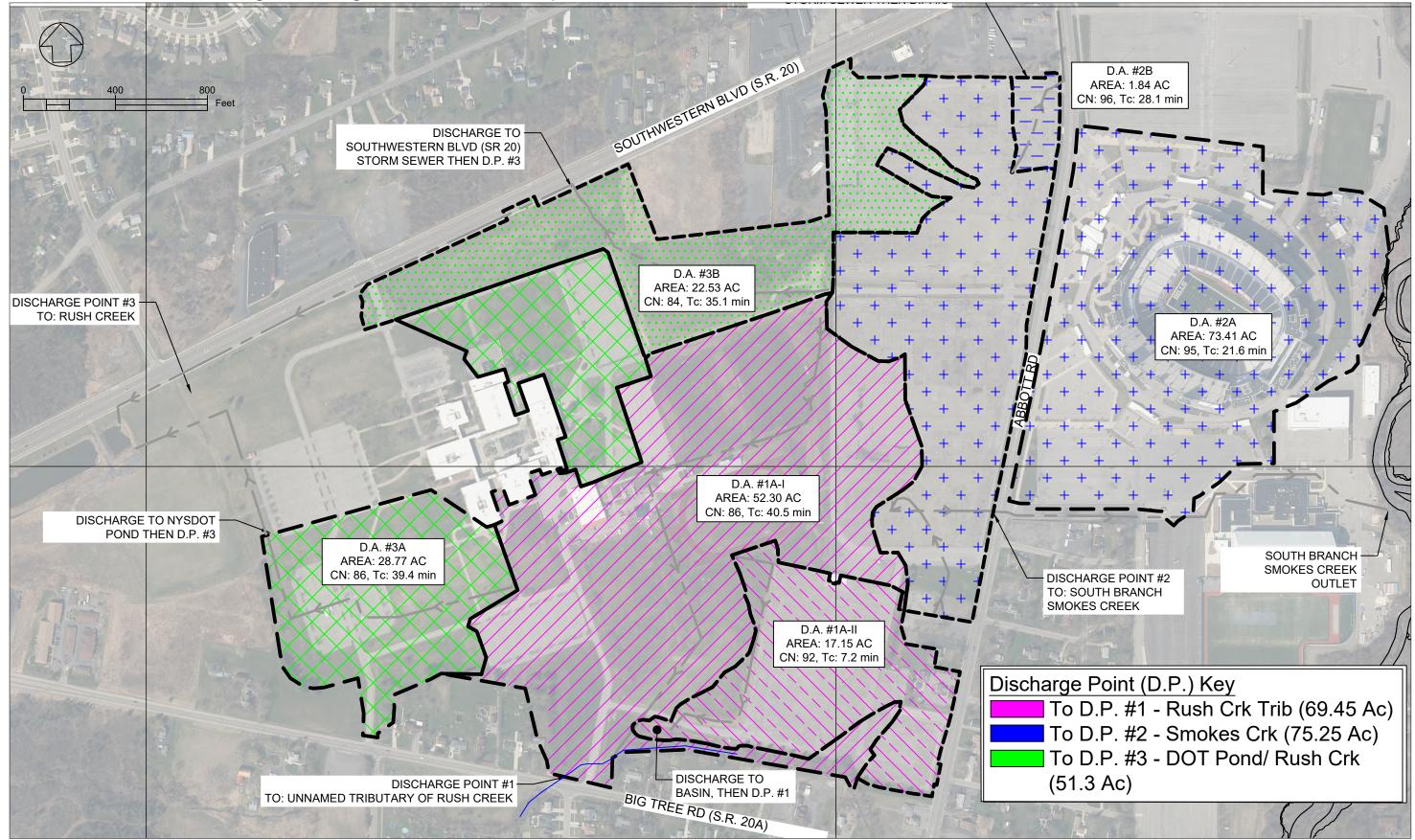
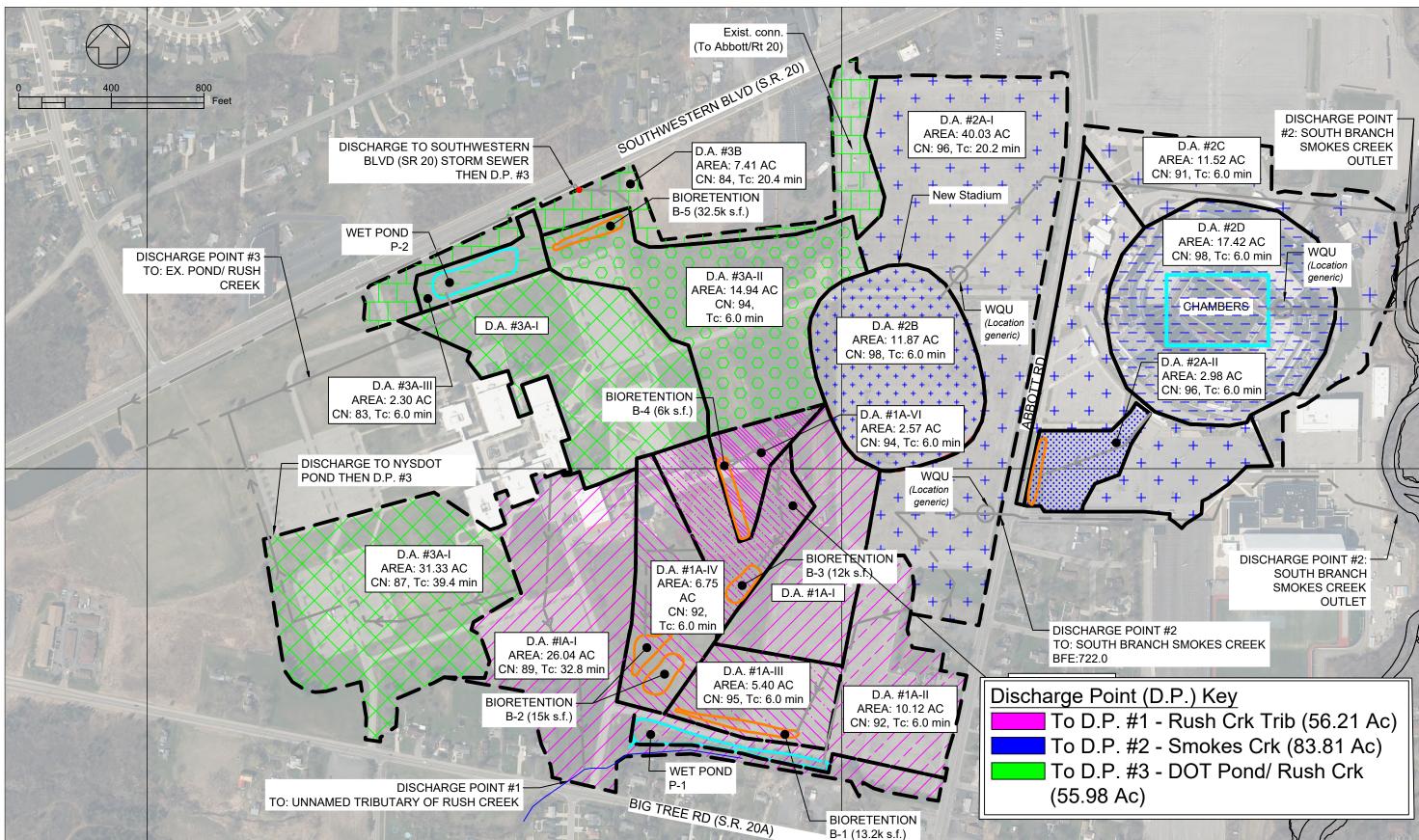
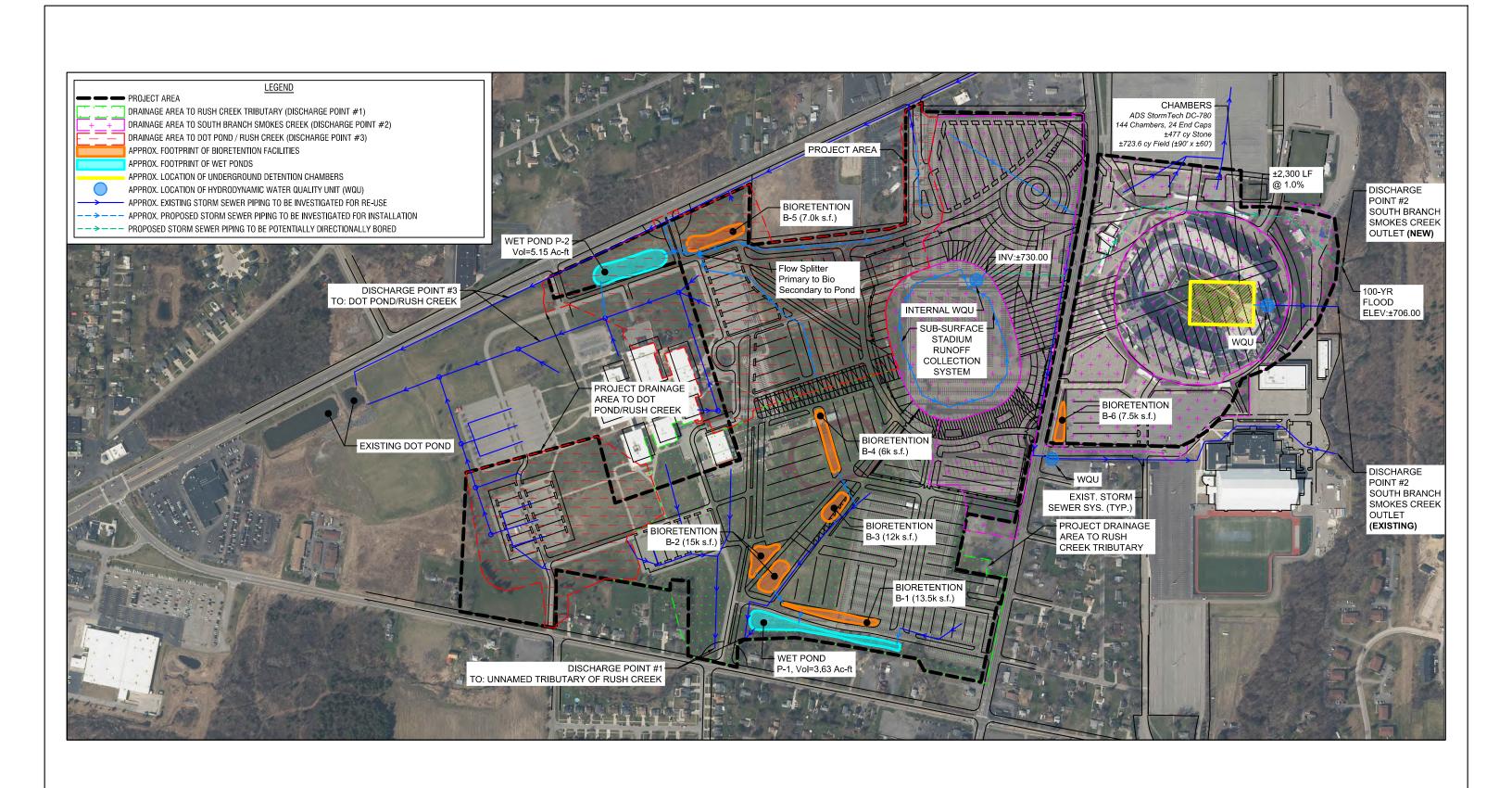


Figure #4 National Flood Hazard Layer FIRMette




Legend


Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Bills Stadium - Existing Drainage Conditions Map

Bills Stadium - Proposed Drainage Conditions Map

Permit Coverage Documents

CONTRACTOR IDENTIFICATION & CERTIFICATION

Prior to the commencement of construction activity and at the completion of the pre-construction meeting (if applicable), all contractors and subcontractors that will be responsible for installing, constructing, repairing, replacing, inspecting and/or maintaining the erosion and sediment control practices or constructing the post-construction stormwater management practices must complete this form. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has commenced, they must also sign the forms. The completed forms shall be considered part of the SWPPP Report. Copies of the executed forms are to be included in the SWPPP that is maintained at the construction site and supplied to the owner per Section VII.A-E of the SWPPP.

Contractor:

Company Name:		
Address:		
City, State, Zip Code:		
Telephone Number:		
Description of Work Responsible Form:		
Contact Name & Title:		
Trained Contractor Certification*:		
Contact Cell No.:		
E-mail:		
Certification:	I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the more current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations.	
Signature Indicating		
Review & Acceptance		
of Certification by		
Contact:		

*Attach copies of Trained Contractor Certification (NYSDEC Endorsed 4-Hr Training) to this form.

Copies of this form may be made if additional Contractor's or certifications are needed.

NOI for coverage under Stormwater General Permit for Construction Activity

version 1.35

(Submission #: HPK-8R06-WNCS7, version 1)

Details

Originally Started By	Sara Gilbert
Alternate Identifier	New Bills Stadium
Submission ID	HPK-8R06-WNCS7
Submission Reason	New
Status	Draft
Active Steps	Form Submitted

Form Input

Owner/Operator Information

Owner/Operator Name (Company/Private Owner/Municipality/Agency/Institution, etc.) Buffalo Bills

Owner/Operator Contact Person Last Name (NOT CONSULTANT) D'Angelo

Owner/Operator Contact Person First Name Kathryn

Owner/Operator Mailing Address One Bills Drive

City Orchard Park

State NY

Zip 14127

Phone 716-312-8607

Email Kathryn.d'angelo@bills.nfl.net

Federal Tax ID NONE PROVIDED

Project Location

Project/Site Name New Bills Stadium

Street Address (Not P.O. Box) 1 Bills Drive

Side of Street West

City/Town/Village (THAT ISSUES BUILDING PERMIT) Erie County

State NY

IN Y

Zip 14127

DEC Region 9

County ERIE

Name of Nearest Cross Street Abbott Road

Distance to Nearest Cross Street (Feet) 0

Project In Relation to Cross Street West

Tax Map Numbers Section-Block-Parcel NONE PROVIDED

Tax Map Numbers

Too long to list

1. Coordinates

Provide the Geographic Coordinates for the project site. The two methods are:

- Navigate to the project location on the map (below) and click to place a marker and obtain the XY coordinates.

- The "Find Me" button will provide the lat/long for the person filling out this form. Then pan the map to the correct location and click the map to place a marker and obtain the XY coordinates.

Navigate to your location and click on the map to get the X,Y coordinates

42.772249208410706,-78.79156284078368

Project Details

2. What is the nature of this project?

Redevelopment with increase in impervious area

3. Select the predominant land use for both pre and post development conditions.

Pre-Development Existing Landuse

Recreational/Sports Field

Post-Development Future Land Use

Recreational/Sports Field

3a. If Single Family Subdivision was selected in question 3, enter the number of subdivision lots. NONE PROVIDED

4. In accordance with the larger common plan of development or sale, enter the total project site acreage, the acreage to be disturbed and the future impervious area (acreage)within the disturbed area.

*** ROUND TO THE NEAREST TENTH OF AN ACRE. ***

Total Site Area (acres) 284

Total Area to be Disturbed (acres) 181.20

Existing Impervious Area to be Disturbed (acres) 96.0

Future Impervious Area Within Disturbed Area (acres) 130.9

5. Do you plan to disturb more than 5 acres of soil at any one time? $\ensuremath{\mathsf{Yes}}$

6. Indicate the percentage (%) of each Hydrologic Soil Group(HSG) at the site.

A (%) 0 B (%) 0 C (%) 6

D (%) 94

7. Is this a phased project? Yes

8. Enter the planned start and end dates of the disturbance activities.

Start Date

01/01/2023

End Date

12/31/2026

9. Identify the nearest surface waterbody(ies) to which construction site runoff will discharge.

South Branch of Smokes Creek, Unnamed Tributary of Rush Creek & Rush Creek

9a. Type of waterbody identified in question 9?

Stream/Creek Off Site Stream/Creek On Site

Other Waterbody Type Off Site Description Smokes Creek & Rush Creek are offsite, Rush Creek Trib. is onsite

9b. If "wetland" was selected in 9A, how was the wetland identified? NONE PROVIDED

10. Has the surface waterbody(ies in question 9 been identified as a 303(d) segment in Appendix E of GP-0-20-001? Yes

11. Is this project located in one of the Watersheds identified in Appendix C of GP-0-20-001? No

12. Is the project located in one of the watershed areas associated with AA and AA-S classified waters?

INO

If No, skip question 13.

13. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as D (provided the map unit name is inclusive of slopes greater than 25%), E or F on the USDA Soil Survey? No

If Yes, what is the acreage to be disturbed? NONE PROVIDED

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent area? No

15. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)? Yes

16. What is the name of the municipality/entity that owns the separate storm sewer system? NYSDOT

17. Does any runoff from the site enter a sewer classified as a Combined Sewer? No

18. Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law? No

19. Is this property owned by a state authority, state agency, federal government or **local government**? Yes

20. Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.) No

Required SWPPP Components

21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)? Yes

22. Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? Yes

If you answered No in question 22, skip question 23 and the Post-construction Criteria and Post-construction SMP Identification sections.

23. Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual? Yes

24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by: Professional Engineer (P.E.)

SWPPP Preparer Pinewoods Engineering, P.C.

Contact Name (Last, Space, First) Gilbert Sara

Mailing Address 42 Aston Villa

City North Chili

State

Zip 14514

Phone 585-261-7852

Email sgilbert@pinewoodseng.com

Download SWPPP Preparer Certification Form

Please take the following steps to prepare and upload your preparer certification form:

1) Click on the link below to download a blank certification form

- 2) The certified SWPPP preparer should sign this form
- 3) Scan the signed form

4) Upload the scanned document <u>Download SWPPP Preparer Certification Form</u>

Please upload the SWPPP Preparer Certification

NONE PROVIDED Comment NONE PROVIDED

Erosion & Sediment Control Criteria

25. Has a construction sequence schedule for the planned management practices been prepared? Yes

26. Select all of the erosion and sediment control practices that will be employed on the project site:

Temporary Structural

Check Dams Dust Control Sediment Basin Sediment Traps Silt Fence Stabilized Construction Entrance Storm Drain Inlet Protection Temporary Stormdrain Diversion Temporary Swale

Biotechnical

None

Vegetative Measures

Protecting Vegetation Seeding Streambank Protection Temporary Swale Topsoiling

Permanent Structural

Land Grading Rock Outlet Protection

Other

NONE PROVIDED

Post-Construction Criteria

* IMPORTANT: Completion of Questions 27-39 is not required if response to Question 22 is No.

27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.

Preservation of Buffers Locating Development in Less Sensitive Areas Reduction of Clearing and Grading Preservation of Undisturbed Area

27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).

All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).

28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout). (Acre-feet) 7.621

29. Post-construction SMP Identification

Use the Post-construction SMP Identification section to identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity that were used to reduce the Total WQv Required (#28).

Identify the SMPs to be used by providing the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use the Post-Construction SMP Identification section to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

30. Indicate the Total RRv provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRv capacity identified in question 29. (acre-feet) 0.658

31. Is the Total RRv provided (#30) greater than or equal to the total WQv required (#28)? No

If Yes, go to question 36. If No, go to question 32.

32. Provide the Minimum RRv required based on HSG. [Minimum RRv Required = (P) (0.95) (Ai) / 12, Ai=(s) (Aic)] (acre-feet) 0.478

32a. Is the Total RRv provided (#30) greater than or equal to the Minimum RRv Required (#32)?

Yes

If Yes, go to question 33.

Note: Use the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the SWPPP.

If No, sizing criteria has not been met; therefore, NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

33. SMPs

Use the Post-construction SMP Identification section to identify the Standard SMPs and, if applicable, the Alternative SMPs to be used to treat the remaining total WQv (=Total WQv Required in #28 - Total RRv Provided in #30).

Also, provide the total impervious area that contributes runoff to each practice selected.

NOTE: Use the Post-construction SMP Identification section to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question #29. (acre-feet)

0.658

Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - provided by the practice. (See Table 3.5 in Design Manual)

34. Provide the sum of the Total RRv provided (#30) and the WQv provided (#33a). 7.710

35. Is the sum of the RRv provided (#30) and the WQv provided (#33a) greater than or equal to the total WQv required (#28)? Yes

If Yes, go to question 36.

If No, sizing criteria has not been met; therefore, NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

36. Provide the total Channel Protection Storage Volume (CPv required and provided or select waiver (#36a), if applicable.

CPv Required (acre-feet) 2.097

CPv Provided (acre-feet) 2.743

36a. The need to provide channel protection has been waived because: NONE PROVIDED

37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (#37a), if applicable.

Overbank Flood Control Criteria (Qp)

Pre-Development (CFS) 319.89

Post-Development (CFS) 263.17

Total Extreme Flood Control Criteria (Qf)

Pre-Development (CFS) 607.60

Post-Development (CFS) 541.90

37a. The need to meet the Qp and Qf criteria has been waived because: NONE PROVIDED

38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been developed? Yes

If Yes, Identify the entity responsible for the long term Operation and Maintenance Buffalo Bills

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). (See question #32a) This space can also be used for other pertinent project information.

The site is comprised mostly of HSG D soils which are not conducive to infiltration practices from large impervious areas. The site also has shallow depth to groundwater and bedrock in the northern portions of the site. To reduce the extents of the disturbance, existing storm sewer infrastructure is re-used to the greatest extent possible which limits the head depth available for certain practices.

Post-Construction SMP Identification

Runoff Reduction (RR) Techniques, Standard Stormwater Management Practices (SMPs) and Alternative SMPs

Identify the Post-construction SMPs to be used by providing the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

RR Techniques (Area Reduction)

Round to the nearest tenth

Total Contributing Acres for Conservation of Natural Area (RR-1) NONE PROVIDED

Total Contributing Impervious Acres for Conservation of Natural Area (RR-1) NONE PROVIDED

Total Contributing Acres for Sheetflow to Riparian Buffers/Filter Strips (RR-2) NONE PROVIDED

Total Contributing Impervious Acres for Sheetflow to Riparian Buffers/Filter Strips (RR-2) NONE PROVIDED

Total Contributing Acres for Tree Planting/Tree Pit (RR-3) NONE PROVIDED

Total Contributing Impervious Acres for Tree Planting/Tree Pit (RR-3) NONE PROVIDED

Total Contributing Acres for Disconnection of Rooftop Runoff (RR-4) NONE PROVIDED

RR Techniques (Volume Reduction)

Total Contributing Impervious Acres for Disconnection of Rooftop Runoff (RR-4) NONE PROVIDED

Total Contributing Impervious Acres for Vegetated Swale (RR-5) NONE PROVIDED

Total Contributing Impervious Acres for Rain Garden (RR-6) NONE PROVIDED

Total Contributing Impervious Acres for Stormwater Planter (RR-7) NONE PROVIDED

Total Contributing Impervious Acres for Rain Barrel/Cistern (RR-8) NONE PROVIDED

Total Contributing Impervious Acres for Porous Pavement (RR-9) NONE PROVIDED **Total Contributing Impervious Acres for Green Roof (RR-10)** NONE PROVIDED

Standard SMPs with RRv Capacity

Total Contributing Impervious Acres for Infiltration Trench (I-1) NONE PROVIDED

Total Contributing Impervious Acres for Infiltration Basin (I-2) NONE PROVIDED

Total Contributing Impervious Acres for Dry Well (I-3) NONE PROVIDED

Total Contributing Impervious Acres for Underground Infiltration System (I-4) NONE PROVIDED

Total Contributing Impervious Acres for Bioretention (F-5) 36.26

Total Contributing Impervious Acres for Dry Swale (O-1) NONE PROVIDED

Standard SMPs

Total Contributing Impervious Acres for Micropool Extended Detention (P-1) NONE PROVIDED

Total Contributing Impervious Acres for Wet Pond (P-2) 34.07

Total Contributing Impervious Acres for Wet Extended Detention (P-3) NONE PROVIDED

Total Contributing Impervious Acres for Multiple Pond System (P-4) NONE PROVIDED

Total Contributing Impervious Acres for Pocket Pond (P-5) NONE PROVIDED

Total Contributing Impervious Acres for Surface Sand Filter (F-1) NONE PROVIDED

Total Contributing Impervious Acres for Underground Sand Filter (F-2) NONE PROVIDED

Total Contributing Impervious Acres for Perimeter Sand Filter (F-3) NONE PROVIDED **Total Contributing Impervious Acres for Organic Filter (F-4)** NONE PROVIDED

Total Contributing Impervious Acres for Shallow Wetland (W-1) NONE PROVIDED

Total Contributing Impervious Acres for Extended Detention Wetland (W-2) NONE PROVIDED

Total Contributing Impervious Acres for Pond/Wetland System (W-3) NONE PROVIDED

Total Contributing Impervious Acres for Pocket Wetland (W-4) NONE PROVIDED

Total Contributing Impervious Acres for Wet Swale (O-2) NONE PROVIDED

Alternative SMPs (DO NOT INCLUDE PRACTICES BEING USED FOR PRETREATMENT ONLY)

Total Contributing Impervious Area for Hydrodynamic 42.67

Total Contributing Impervious Area for Wet Vault NONE PROVIDED

Total Contributing Impervious Area for Media Filter NONE PROVIDED

"Other" Alternative SMP? NONE PROVIDED

Total Contributing Impervious Area for "Other" NONE PROVIDED

Provide the name and manufaturer of the alternative SMPs (i.e. proprietary practice(s)) being used for WQv treatment.

Note: Redevelopment projects which do not use RR techniques, shall use questions 28, 29, 33 and 33a to provide SMPs used, total WQv required and total WQv provided for the project.

Manufacturer of Alternative SMP To Be Determined

Name of Alternative SMP To Be Determined

Other Permits

40. Identify other DEC permits, existing and new, that are required for this project/facility. None

If SPDES Multi-Sector GP, then give permit ID NONE PROVIDED

If Other, then identify NONE PROVIDED

41. Does this project require a US Army Corps of Engineers Wetland Permit? No

If "Yes," then indicate Size of Impact, in acres, to the nearest tenth NONE PROVIDED

42. If this NOI is being submitted for the purpose of continuing or transferring coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned. NONE PROVIDED

MS4 SWPPP Acceptance

43. Is this project subject to the requirements of a regulated, traditional land use control MS4? Yes - Please attach the MS4 Acceptance form below

If No, skip question 44

44. Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI? Yes

MS4 SWPPP Acceptance Form Download Download form from the link below. Complete, sign, and upload. <u>MS4 SWPPP Acceptance Form</u>

MS4 Acceptance Form Upload NONE PROVIDED Comment NONE PROVIDED

Owner/Operator Certification

Owner/Operator Certification Form Download

Download the certification form by clicking the link below. Complete, sign, scan, and upload the form. Owner/Operator Certification Form (PDF, 45KB)

Upload Owner/Operator Certification Form NONE PROVIDED Comment NONE PROVIDED

Status History

	User	Processing Status
7/18/2022 9:18:51 AM	Sara Gilbert	Draft

Processing Steps

Step Name	Assigned To/Completed By	Date Completed
Form Submitted		
Under Review	DAVID GASPER	
Under Review	Daniel von Schilgen	

Department of Environmental Conservation

Owner/Operator Certification Form

SPDES General Permit For Stormwater Discharges From Construction Activity (GP-0-20-001)

Project/Site Name:			
eNOI Submission Number:			
eNOI Submitted by:	Owner/Operator	SWPPP Preparer	Other

Certification Statement - Owner/Operator

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Kathryn Owner/Operator First Name

D'Angelo M.I. Last Name

Signature

Date

Department of Environmental Conservation

SWPPP Preparer Certification Form

SPDES General Permit for Stormwater Discharges From Construction Activity (GP-0-20-001)

Project Site Information Project/Site Name

Owner/Operator Information

Owner/Operator (Company Name/Private Owner/Municipality Name)

Certification Statement – SWPPP Preparer

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-20-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First name

MI Last Name

Signature

Date

NEW YORK STATE OF OPPORTUNITYDepartment of Environmental ConservationNYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505
MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form for
Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)
I. Project Owner/Operator Information
1. Owner/Operator Name:
2. Contact Person:
3. Street Address:
4. City/State/Zip:
II. Project Site Information
5. Project/Site Name:
6. Street Address:
7. City/State/Zip:
III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information
8. SWPPP Reviewed by:
9. Title/Position:
10. Date Final SWPPP Reviewed and Accepted:
IV. Regulated MS4 Information
11. Name of MS4:
12. MS4 SPDES Permit Identification Number: NYR20A
13. Contact Person:
14. Street Address:
15. City/State/Zip:
16. Telephone Number:

MS4 SWPPP Acceptance Form - continued

V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative

I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.

Printed Name:

Title/Position:

Signature:

Date:

VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

Date: _____

Addressed to MS4 Address Line 1 Address Line 2

RE: New Bills Stadium, 1 Bills Drive Request to Disturb Greater Than 5-Acres

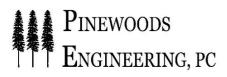
Dear MS4 Officer,

Part II.C.3 of the SPDEs General Permit for Stormwater Discharges from Construction Activity, requires written authorization from the MS4 prior to disturbing more than 5 Acres of soil. This letter serves as an official request for this authorization.

- A Qualified Inspector will conduct at least 2 site inspections every 7 calendar days whenever more than 5-Acres of soil has been disturbed. Inspections during this period will be separated by a minimum of 2 full calendar days.
- In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures will be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased.
- A phasing plan is included within the Construction documents that defines the maximum disturbed area per phase and shows required cuts and fills.
- The erosion and sediment control plans and SWPPP have been designed for a disturbance greater than 5-Acres however, the owner agrees to install any additional practices needed to protect water quality.
- A copy of this letter (once executed) will be retained within the SWPPP that is kept onsite. These requirements that apply when greater than 5-Acres of soil is disturbed are included in the project SWPPP.

If you agree to authorize greater than 5-Acres of soil to be disturbed, please sign below;

Signature:	
Name:	
Title:	
Town:	
Phone:	
E-mail:	


Sincerely,

Permit Termination Documents

Calculations & HydroCAD Reports

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/30/22 By: SLG

Limits of Disturbance Calculations

I. Existing Site Ground Delineation:

Ground Cover	HSG	Area (Ac)
Asphalt/Conc	С	20.61
Asphalt/Conc	D	110.27
Total Asphalt/Co	onc	130.89
Lawn Good	С	1.80
Lawn Good	D	46.15
Total Lawn		47.94
Gravel Surface	D	0.15
Woods Good	D	2.23

Total Disturbance Area: 181.20

Existing Impervious Area on Site: 53%

II. Existing Soils:

HSG A:	0%
HSG B:	0%
HSG C:	12%
HSG D:	88%

III. Proposed Site Ground Delineation:

Ground Cover	HSG	Area (Ac)
Asphalt/Conc	С	20.61
Asphalt/Conc	D	110.27
Total Asphalt/Co	onc	130.89
Lawn Good	С	1.80
Lawn Good D		46.15
Total Lawn		47.94
Gravel Surface	D	0.15
Woods Good D		2.23
Total Disturban	181.20	

Proposed Impervious Area on Site: 72%

IV. Existing Vs. Proposed Comparison

Existing Impervious Area:	95.98 Ac
Removed Impervious Area:	8.70 Ac
Exist. Imperv.to Remain:	87.29 Ac
Exist. Imperv. To Remain:	87.29 Ac
New Imperv. Area:	43.66 Ac
Proposed Imperv. Area:	130.95 Ac

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/30/22 By: SLG

Required Water Quality Volume (WQv) Calculations

Discharge Point #1

I. Project Delineation

	-				
Classification	Drainage Area (Ac)	Impervious Area in D.A. (Ac)	% Imp.	Rv	Exist. WQv Provd'd (Ac-ft)
New Development	16.000	15.998	100%	0.95	-
Redevelopment (Without existing WQv provided)	40.205	19.532	49%	0.49	-
Redevelopment (With Existing WQv provided in a standard practice)	N/A	N/A	-	-	N/A
Total	56.205	35.530	-	-	-

Project Delineation - By Drainage Area (D.A.)

Project Delineation - By Limits of Disturbance (LOD)

Classification	LOD Area (Ac)	Impervious Area in LOD (Ac)	% Imp.	Rv	Exist. WQv Provd'd (Ac-ft)
New Development	16.000	15.998	99.99%	0.95	-
Redevelopment (Without existing WQv provided)	36.773	17.468	47.50%	0.478	-
Redevelopment (With Existing WQv provided in an alternative practice)	0.000	0.000	-	-	N/A
Total	52.773	33.466	-	-	-

II. New Development Areas - Required WQv

Project located in an Enhanced Phosphorus Removal Area? NO

From Chapter 4: New York State Stormwater Management Design Manual:

Table 4.1 New York State Sizing Criteria

90% Rule:

 $\begin{array}{c} WQv \quad (P)(Rv)(A) \\ (initial) = 12 \end{array}$

 Where:
 Rv=0.05+0.009*I(%)
 Rv =
 0.950

 A=New Develop't D.A.(Ac)
 A =
 16.000

 P = 90% Rainfall (in)
 P =
 1.00

Required WQv for New Development: 55,169 cf

III. WQv/RRv Provided By Area Reduction Practices & Rooftop Disconnect

Practice	Contributing Area (Ac)	Contributing Imp. Area (Ac)	Notes
Conserv. Of Natural Areas			Min. 10k S.F.
Riparian Buffers			Max. Lth: 75-150'
Filter Strips			
Tree Planting			100sf imperv/tree
Total	0.00	0.00	

Recalculate WQv after application of Area Reduction Techniques

Calc. Step	Total Area (Ac)	Imp. Area (Ac)	Percent Imp. (%)	Runoff Coeff. Rv	WQv (cf)
Initial WQv	16.00	16.00	99.99%	0.95	55169
Subtract Area	0.00	0.00			
Adjusted WQv	16	16.00	99.99%	0.95	55169
Disconn. Of Rf Tops		0.00			
Total Adjusted	16	16.00	99.99%	0.95	55169
WQv Reduced					0

Area Reduction Practices and Rooftop Disconnect Not Used To Provide WQv/RRv

WQv/RRv Prvd'd By Area Reduc. Prac. & Rftop Disconnt: 0 cf

IV. WQv/RRv Provided By Volume Reduction Practices

Practice	Contributing Area (Ac)	Contributing Imp. Area (Ac)	RRv Applied (cf)
Vegetated Swale	-	-	-
Rain Garden	-	-	-
Stormwater Planter	-	-	-
Rain Barrel/Cistern	-	-	-
Porous Pavement	-	-	-
Green Roof	-	-	-
Total	-	-	-

Volume Reduction Practices Not Use to Provide WQv/RRv

WQv/RRv Provd'd By Volume Reduc. Prac.: 0 cf

V. WQv Provided By Standard Practices

Practice	Drainage Area (Ac)	Imp. Area (Ac)	RRv Prvd'd (cf)	WQv Prvd'd (Non RRv) (cf)	Total WQv Prvd'd (cf)
Infiltration Trench	-	-	-	-	-
Infiltration Basin	-	-	-	-	-
Dry Well	-	-	-	-	-
Underground Infiltration	-	-	-	-	-
Bioretention & Infiltration Bio	30.161	22.088	21696	31944	53640
Dry Swale	-	-	-	-	-
Micropool Extended Det. (P-1)	-	-	-	-	-
Wet Pond (P-2)	40.277	28.871	0	4500	4500
Wet Extended Det. (P-3)	-	-	-	-	-
Multiple Pond System (P-4)	-	-	-	-	-
Pocket Pond (P-5)	-	-	-	-	-
Surface Sand Filter (F-3)	-	-	-	-	-
Perimeter Sand Filter (F-3)	-	-	-	-	-
Organic Filter (F-4)	-	-	-	-	-
Shallow Wetland (W-1)	-	-	-	-	-
Extended Det. Wetland (W-2)	-	-	-	-	-
Pond/Wetland System (W-3)	-	-	-	-	-
Pocket Wetland (W-4)	-	-	-	-	-
Wet Swale (O-2)	_	-	-	-	-
Total	70.438	50.959	21696	36444	58140

WQv Provided By Standard Practices: 58,140 cf

VI. Total WQv Required/Provided By Standard Practices

(Part II.) New Develpmnt WQv Reqr'd To Be Provided in a Standard Practice: 55,169 cf

S	tandard Practice	WQv Provd'd (cf)	
Area Ree	duction & Roof Disconn.	0	(Part III.)
V	olume Reduction	0	(Part IV.)
St	andard Practices	58140	(Part V.)
	Total	58140	
			-
Provo	l'd WQv in Stndrd Prac. M	eets/Exceeds Required?	YES
			_
	Excess WQv Provided:	2,970 cf	

(This Volume May Be Applied To Meeting Redevelopment WQv Requirements Where Applicable)

VII. Redevelopment Areas - Required Water Quality Volume

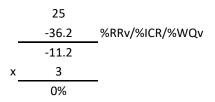

Based on Chapter 9 Redevelopment Standards

Table 4.1 N	Vew York Sta	te Sizing Criteria					
			Where:				
90% Rule:			Rv=0.05	+0.009	*l(%)	Rv =	0.478
	WQv	(P)(Rv)(A)	A=Redeve	elopme	ent LOD	(Ac) A =	36.773
	(initial) =	12	P = 90% F	Rainfal	l (in)	P =	1.00
Init	tial Required	WQv for Redevelopment	: 63,7	42	cf		
Water Oua	ality Volume	Provided Through Imperv	ious Cover	Reduc	tion		
ting Impervio		LOD/Redevelopment Area:		Ac			
		emoved Impervious Cover:		Ac			
-xisting impe	rvious Cover	in LOD/Redev. Remaining:	: 11.11	Ac			
Percent	age of Exist.	Impervious Cvr Removed:	31.6%	٦			
				-			
			o/ and The	refore	Moote	Redevelo	pment WQv
Impervious	s Cover Redu	ction Meets or Exceeds 25	% ana ine		Wieels		
		ction Meets or Exceeds 25 litional Practices Required			Wieets		
Requireme	ents. No Add	litional Practices Required		-			
Requireme	ents. No Add			-			<u>ent</u>
Requireme	ents. No Add ided Through	litional Practices Required	h May Be A	-		evelopme	<u>ent</u>
Requireme WQv Provi	ents. No Add ided Through ess WQv Prov	litional Practices Required	h May Be A : 2970	pplied cf	to Red	evelopme	<u>ent</u>
Requireme WQv Provi	ents. No Add ided Through ess WQv Prov	litional Practices Required	h May Be A : 2970	pplied cf	to Red (Part	evelopme	<u>ent</u>
Requireme WQv Provi Exce	ents. No Add ided Through ess WQv Prov tndrd Prac. V	litional Practices Required	h May Be A : 2970 or Redevep.	cf	to Red (Part	evelopme	<u>ent</u>
Requireme WQv Provi Exce	ents. No Add ided Through ess WQv Prov tndrd Prac. V dard Practice	itional Practices Required Standard Practices Which vided in Standard Practices VQv as % of Initial WQv fo WQv & Impervious Cover	h May Be A 2970 or Redevep r Reductior	cf	to Red (Part	evelopme	<u>ent</u>
Requireme WQv Provi Exce Si Total Stand	ents. No Add ided Through ess WQv Prov tndrd Prac. V dard Practice Percentage o	litional Practices Required Standard Practices Whick vided in Standard Practices VQv as % of Initial WQv fo	h May Be A 2970 r Redevep r Reductior	pplied cf : 4	to Red (Part .7%	evelopme	

Impervious Cover Reduction and WQv Provided in Standard Practices is Greater Than 25% and Therefore Fully Meet Redevelopment WQv Requirements. No Further Practices Needed

Total WQv Required To Be Provided in an Alternative Practice

36.2% :WQv Provd'd through Imp. Cover Reduction & Stndrd Prac.'s (%RRv & %ICR & %WQv)

0.0% of Initial WQv/Redevelopment To Be Provided in an Alternative Practice

- cf of WQv Required To Be Provided in an Alterative Practice

VIII. Total Water Quality Volume Provided by Alternative Practices

Alternative Practices are Not Used to Meet Redevelopment WQv Requirements

Total WQv Provided with Alternative Practices: 0 cf

IX. Total WQv Required Summary

Project Classification	WQv Method	Reqr'd WQv (cf)	Reqr'd WQv (cf)	Reqr'd WQv (Ac-ft)	
New Development	Standard	55,169	55,169	1.267	
	Imp. Remvl	15,936			
Redevelopment	Standard	0	15,936	0.366	
	Alternative	0			
Total	-	71,105	71,105	1.632	

X. Total WQv Provided Summary

Project Classification	WQv Method	Provd'd WQv (cf)	Provd'd WQv (cf)	Provd'd WQv (Ac-ft)	
New Development	Standard	55,169	55,169	1.267	
	Imp. Remvl	15,936			
Redevelopment	Standard	2,970	18,906	0.434	
	Alternative	0			
Total	-	74,075	74,075	1.701	

Provided WQv Meets/Exceeds Required WQv? YES

Minimum Required & Provided RRv Calculations Design Point #1

Enter the Soils	Data for th	ne site	
Soil Group	Acres	S	
A	0.00	55%	
В	0.00	40%	
С	0.00	30%	
D	16.00	20%	(New Development Only)
Total Area	16.00		Total Area = New Development Area
Calculate the N	linimum R	Rv	
S =	0.2		
Impervious =	15.998	acre	
Precipitation	1	in	
Rv	0.95		
Minimum RRv	11,034	ft3	
	0.253	af]

Drainage Area	Practice	Practice Name	Total Area	Imp. Area	RRv Provided (cf)	RRv Provided (Ac- ft)
D.A. #1A-III	Bioretention	B-1	5.40	4.52	6,336	0.145
D.A. #1A-IV	Bioretention	B-2	6.75	4.67	6,720	0.154
D.A. #1A-V	Bioretention	B-3	5.32	4.09	5,760	0.132
D.A. #1A-VI	Bioretention	B-4	2.57	2.03	2,880	0.066
D.A. #1A-II	Wet Pond	P-1	10.12	6.78	-	-
Total			20.05	15.31	21,696	0.498

RRv Provided Exceeds Minimum RRv? Yes

Version 1.7 Last Updated: 10/02/2015

• •	• •	er 10 of the NYS Des		•	•	
development 1 y	/ear runoff volι	ume)?				No
Design Point:	1		Manually ente	r P. Total Area	and Impervi	ous Cover
P=	1.00	inch	wandany enter	r, iotai Aica	unu impervi	003 00/01.
		Breakdown	of Subcatchment	S		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ^³)	Description
1	5.40	4.52	84%	0.80	15,744	DA: 1A-III to B-1
2	6.75	4.67	69%	0.67	16,475	DA: 1A-IV to B-2
3	5.32	4.09	77%	0.74	14,321	DA: 1A-V to B-3
4	2.57	2.03	79%	0.76	7,099	DA: 1A-VI to B-4
5	10.12	6.78	67%	0.65	23,996	DA:1A-II to P-1
6	26.04	13.44	52%	0.51	48,642	DA:1A-I
7						
8						
9						
10						
Subtotal (1-30)	56.21	35.53	63%	0.62	126,278	Subtotal 1
Total	56.21	35.53	63%	0.62	126,278	Initial WQv

l	dentify Runoff Red	duction Technique	s By Area
Technique	Total Contributing Area	Contributing Impervious Area	Notes
	(Acre)	(Acre)	
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet
Filter Strips	0.00	0.00	
Tree Planting	0.00	0.00	impervious area may be subtracted per
Total	0.00	0.00	

Recalculat	e WQv after appli	cation of Area Red	luction Techni	ques		
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ^³)	
"< <initial td="" wqv"<=""><td>56.21</td><td>35.53</td><td>63%</td><td>0.62</td><td>126,278</td><td></td></initial>	56.21	35.53	63%	0.62	126,278	
Subtract Area	0.00	0.00				
WQv adjusted after Area Reductions	56.21	35.53	63%	0.62	126,278	
Disconnection of Rooftops		0.00				
Adjusted WQv after Area Reduction and Rooftop Disconnect	56.21	35.53	63%	0.62	126,278	2.9

	Runoff Reduction V	olume a	and Treated vo	olumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
duct	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Rec	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
olu	Rain Garden	RR-6	0.00	0.00	0	
a/V	Stormwater Planter	RR-7	0.00	0.00	0	
Are	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
Rv	Infiltration Trench	I-1	0.00	0.00	0	0
N/R	Infiltration Basin	I-2	0.00	0.00	0	0
Ps v ity	Dry Well	I-3	0.00	0.00	0	0
rd SMPs Capacity	Underground Infiltration System	I-4	0.00			
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	20.05	15.31	21696	31944
Sta	Dry swale	0-1	0.00	0.00	0	0
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2	30.16	22.09		4500.000
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
S	Pocket Pond (p-5)	P-5				
Standard SMPs	Surface Sand filter (F-1)	F-1				
d S	Underground Sand filter (F-2)	F-2				
ıdar	Perimeter Sand Filter (F-3)	F-3				
Star	Organic Filter (F-4	F-4				
0,	Shallow Wetland (W-1)	W-1				
	Extended Detention Wetland (W-2	W-2				
	Pond/Wetland System (W-3)	W-3				
	Pocket Wetland (W-4)	W-4				
	Wet Swale (O-2)	0-2				
	Totals by Area Reduction	\rightarrow	0.00	0.00	0	
	Totals by Volume Reduction	\rightarrow	0.00	0.00	0	
	Totals by Standard SMP w/RRV	\rightarrow	20.05	15.31	21696	31944
	Totals by Standard SMP	\rightarrow	30.16	22.09		4500

Т	Totals (Area + Volume + all SMPs) $ ightarrow$		50.21	37.39	21,696	36,444
	Impervious Cover V	error				
	Total Area V	error				

(For use on HSG C or D Soils with underdrains)

k

Af=WQv*(df)/[k*(hf+df)(tf)]

- Af Required Surface Area (ft2)
- WQv Water Quality Volume (ft3)

- df Depth of the Soil Medium (feet)
- Average height of water above the planter bed hf
- tf Volume Through the Filter Media (days)
- The hydraulic conductivity [ft/day], can be varied depending on the properties of the soil media. Some reported conductivity values are: Sand - 3.5 ft/day (City of Austin 1988); Peat - 2.0 ft/day (Galli 1990);
- Leaf Compost 8.7 ft/day (Claytor and Schueler, 1996); Bioretention Soil (0.5 ft/day (Claytor & C | | 400C)

Design Point:	1									
Enter Site Data For Drainage Area to be Treated by Practice										
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ^³)	Precipitation (in)	Description			
1	5.40	4.52	0.84	0.80	15744.04	1.00	DA: 1A-III to B-1			
Enter Impervious by Disconnectior			84%	0.80	15,744	< <wqv ac<br="" after="">Disconnected R</wqv>				
Enter the portion routed to this p		nat is not redu	ced for all pra	ctices		ft ³				
			Soil Inform	ation						
Soil Group										
Soil Infiltration I	Rate		in/hour							
Using Underdra	ins?	Yes	Okay							
Calculate the Minimum Filter Area										
				Value		Units	Notes			
	WQv			15,744		ft ³				
Enter Depth of Soil Media			df	2.5		ft	2.5-4 ft			
Enter H	lydraulic Conduc	ctivity	k	0.5		ft/day				
Enter Ave	erage Height of I	Ponding	hf	0.5		ft	6 inches max.			
E	nter Filter Time		tf	2		days				
Rec	quired Filter Are	ea	Af	1	3120	ft²				
		Determi	ne Actual Bio	-Retenti	on Area		·			
Filter Width		1	ft							
Filter Length		13200	ft							
Filter Area		13200	ft ²							
Actual Volume	Provided	15840	ft ³							
		Dete	ermine Runof	f Reduct	tion					
Is the Bioretent another practice	-	; flow to	No	Select	Practice					
RRv		6,336								
RRv applied		6,336	ft ³	This is 40% of the storage provided or WQv whichever is less.						
Volume Treated	1	9,408	ft ³	This is the portion of the WQv that is not reduced in the practice.						
Volume Directe	d	0	ft ³	This volume is directed another practice						

Sizing √	ОК	Check	to be sure Area provided $\geq Af$
	(For use on HSG C or D Soi	ls with	n underdrains)
	Af=WQv*(df)/[k*	hf+d [•]	f)(tf)]
Af	Required Surface Area (ft2)		The hydraulic conductivity [ft/day], can be varied
WQv	Water Quality Volume (ft3)		depending on the properties of the soil media. Some reported conductivity values are: Sand - 3.5 ft/day
df	Depth of the Soil Medium (feet)	k	(City of Austin 1988); <i>Peat</i> - 2.0 ft/day (Galli 1990);
hf	Average height of water above the planter bed		Leaf Compost - 8.7 ft/day (Claytor and Schueler,
tf	<i>tf</i> Volume Through the Filter Media (days)		1996); <i>Bioretention Soil</i> (0.5 ft/day (Claytor &

Schueler, 1996)

Design Point:	1							
	Enter	Site Data For	Drainage Are	a to be 1	Freated by	Practice		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ^³)	Precipitation (in)	Description	
2	6.75	4.67	0.69	0.67	16475.48	1.00	DA: 1A-IV to B-2	
Enter Impervious by Disconnection			69%	0.67	16,475	< <wqv ac<br="" after="">Disconnected R</wqv>		
Enter the portion routed to this pra		nat is not redu	ced for all pra	ctices		ft ³		
			Soil Inform	ation				
Soil Group		D						
Soil Infiltration R	ate		in/hour					
Using Underdrains? Yes			Okay					
Calculate the Minimum Filter Area								
		Value		Units	Notes			
WQv				16,475		ft ³		
Enter D	Depth of Soil M	edia	df	2.5		ft	2.5-4 ft	
Enter Hy	/draulic Conduc	ctivity	k	0.5		ft/day		
Enter Aver	rage Height of I	Ponding	hf	0.5		ft	6 inches max.	
En	nter Filter Time		tf	2		days		
Req	uired Filter Are	a	Af	13	3730	ft²		
		Determi	ne Actual Bio	-Retenti	on Area			
Filter Width		1	ft					
Filter Length		14000	ft					
Filter Area		14000	ft ²					
Actual Volume P	rovided	16800	ft ³					
		Dete	ermine Runof	f Reduct	tion			
Is the Bioretention contributing flow to another practice?			No	Select	Practice			
RRv		6,720						
RRv applied		6,720	ft ³	This is 40% of the storage provided or WQv whichever is less.				
Volume Treated		9,755	ft ³	This is the portion of the WQv that is not reduced in the practice.				

Volume Directed	0	ft ³	This volume is directed another practice
Sizing √	ОК		Check to be sure Area provided $\geq Af$

(For use on HSG C or D Soils with underdrains)

Af=WQv*(df)/[k*(hf+df)(tf)]

k

Af	Required Surface Area (ft2)
WQv	Water Quality Volume (ft3)
df	Depth of the Soil Medium (feet)
hf	Average height of water above the planter bed
tf	Volume Through the Filter Media (days)

٦

Г

The hydraulic conductivity [ft/day], can be varied depending on the properties of the soil media. Some reported conductivity values are: **Sand** - 3.5 ft/day (City of Austin 1988); **Peat** - 2.0 ft/day (Galli 1990);

Leaf Compost - 8.7 ft/day (Claytor and Schueler, 1996); Bioretention Soil (0.5 ft/day (Claytor &

Design Point:	1										
	Enter Site Data For Drainage Area to be Treated by Practice										
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description				
3	5.32	4.09	0.77	0.74	14321.26	1.00	DA: 1A-V to B-3				
Enter Impervious by Disconnectior			77%	0.74	14,321	< <wqv ac<br="" after="">Disconnected R</wqv>					
Enter the portio routed to this p		nat is not redu	ced for all pra	ctices		ft ³					
			Soil Informa	ation							
Soil Group		D									
Soil Infiltration R	Rate		in/hour								
Using Underdra	ins?	Yes	Okay								
Calculate the Minimum Filter Area											
		Value		Units	Notes						
WQv				14,321		ft ³					
	Depth of Soil M		df	2.5		ft	2.5-4 ft				
	ydraulic Conduo		k	0.5		ft/day					
	rage Height of I	Ponding	hf	0.5		ft	6 inches max.				
	nter Filter Time		tf	2		days					
Rec	uired Filter Are		Af			ft²					
		Determi	ne Actual Bio-	Retenti	on Area						
Filter Width		1	ft								
Filter Length		12000	ft								
Filter Area		12000	ft^2								
Actual Volume F	Provided	14400	ft ³								
			ermine Runof	f Reduct	tion						
Is the Bioretention contributing flow to another practice?				Select	Practice						
RRv		5,760									
RRv applied5,760ft 3This is 40% of the storage provide whichever is less.					ed or WQv						

Volume Treated	8,561	lft ³	This is the portion of the WQv that is not reduced in the practice.
Volume Directed	0	ft ³	This volume is directed another practice
Sizing √	ОК		Check to be sure Area provided $\geq Af$

(For use on HSG C or D Soils with underdrains)

Af=WQv*(df)/[k*(hf+df)(tf)]

k

- Af Required Surface Area (ft2)
- WQv Water Quality Volume (ft3)
- df Depth of the Soil Medium (feet)
- Average height of water above the planter bed hf
- tf Volume Through the Filter Media (days)

The hydraulic conductivity [ft/day], can be varied depending on the properties of the soil media. Some reported conductivity values are: Sand - 3.5 ft/day (City of Austin 1988); *Peat* - 2.0 ft/day (Galli 1990);

Leaf Compost - 8.7 ft/day (Claytor and Schueler, 1996); Bioretention Soil (0.5 ft/day (Claytor & C - I- - - I - - - 400C)

Design Point:	1						
	Enter	Site Data For	Drainage Area	a to be 1	Treated by	Practice	
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description
4	2.57	2.03	0.79	0.76	7098.83	1.00	DA: 1A-VI to B-4
Enter Impervious by Disconnection			79%	0.76	7,099	< <wqv ac<br="" after="">Disconnected R</wqv>	
Enter the portion routed to this pr		nat is not redu	ced for all pra	ctices		ft ³	
			Soil Inform	ation			
Soil Group		D					
Soil Infiltration R	late		in/hour				
Using Underdrai	Using Underdrains? Yes						
		Calcula	te the Minim	um Filte	er Area		
				V	'alue	Units	Notes
	WQv			7,099		ft ³	
Enter [Depth of Soil M	edia	df	2.5		ft	2.5-4 ft
Enter Hy	ydraulic Conduc	ctivity	k	0.5		ft/day	
	rage Height of F	Ponding	hf		0.5	ft	6 inches max.
Er	nter Filter Time		tf		2	days	
Req	uired Filter Are		Af	-	916	ft ²	
		Determi	ne Actual Bio	Retenti	on Area		
Filter Width		1	ft				
Filter Length		6000	ft				
Filter Area		6000	ft ²				
Actual Volume P	ft ³						
		Det	ermine Runof	f Reduct	tion		
Is the Bioretention contributing flow to another practice?		No	Select	Practice			
RRv		2,880					

RRv applied	2,880	ft ³	<i>This is 40% of the storage provided or WQv whichever is less.</i>
Volume Treated	4,219	ft ³	This is the portion of the WQv that is not reduced in the practice.
Volume Directed	0	ft ³	This volume is directed another practice
Sizing √	ОК		Check to be sure Area provided $\geq Af$
Total RRv Applied	21,696.00		
Total Area	20.05		
Total Impervious Area	15.31		
Total Volume Treated	31,943.60		
Rooftop Disconnect Impervious Area Total	0.00		

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/30/22 By: SLG

Provided Water Quality Volume (WQv) Calculations

Design Point #1

I. Breakdown of Subcatchments

Drainage Area	Total Area (Ac)	Imperv. Area (Ac)	Percent Imperv.	Rv	WQv* (cf)	Practice Description	Practice Name
D.A. #1A-III	5.40	4.52	84%	0.803	15744	Bioretention	B-1
D.A. #1A-IV	6.75	4.67	69%	0.672	16475	Bioretention	B-2
D.A. #1A-V	5.32	4.09	77%	0.741	14321	Bioretention	B-3
D.A. #1A-VI	2.57	2.03	79%	0.760	7099	Bioretention	B-4
D.A. #1A-II	10.12	6.78	67%	0.653	23996	Wet Pond	P-1
					77636		

Total Imperv:

22.09

*Based on P = 1.00 in

II. Provided WQv

D.A.	Practice	Total Area (Ac)	Imperv. Area (Ac)	WQv Provided (cf)	WQv Provided (Ac-ft)
D.A. #1A-III	B-1	5.40	4.52	15744	0.361
D.A. #1A-IV	B-2	6.75	4.67	16475	0.378
D.A. #1A-V	B-3	5.32	4.09	14321	0.329
D.A. #1A-VI	B-4	2.57	2.03	7099	0.163
D.A. #1A-II	P-1	10.12	6.78	4500	0.103
		0.00	0.00	0	0.000
	Total	30.161	22.088	58140	1.335

Exist. Standard Practice WQv to remain/be replaced = 0.0 cf

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/30/22 By: SLG

Required Water Quality Volume (WQv) Calculations

Discharge Point #2

I. Project Delineation

Classification	Drainage Area (Ac)	Impervious Area in D.A. (Ac)	% Imp.	Rv	Exist. WQv Provd'd (Ac-ft)
New Development	5.000	1.367	27%	0.30	-
Redevelopment (Without existing WQv provided)	78.814	73.468	93%	0.89	-
Redevelopment (With Existing WQv provided in a standard practice)	N/A	N/A	-	-	N/A
Total	83.814	74.835	-	-	-

Project Delineation - By Drainage Area (D.A.)

Project Delineation - By Limits of Disturbance (LOD)

Classification	LOD Area (Ac)	Impervious Area in LOD (Ac)	% Imp.	Rv	Exist. WQv Provd'd (Ac-ft)
New Development	5.000	1.367	27.34%	0.296	-
Redevelopment (Without existing WQv provided)	79.767	73.710	92.41%	0.882	-
Redevelopment (With Existing WQv provided in an alternative practice)	0.000	0.000	-	-	N/A
Total	84.767	75.077	-	-	-

II. New Development Areas - Required WQv

Project located in an Enhanced Phosphorus Removal Area? NO

From Chapter 4: New York State Stormwater Management Design Manual:

Table 4.1 New York State Sizing Criteria

90% Rule:

WQv (P)(Rv)(A)(initial) = 12

Where:		
Rv=0.05+0.009*I(%)	Rv =	
A=New Develop't D.A.(Ac)	A =	5.00
P = 90% Rainfall (in)	P =	1.00

cf

Required WQv for New Development: 5,373

III. WQv/RRv Provided By Area Reduction Practices & Rooftop Disconnect

WQv/RRv Prvd'd By Area Reduc. Prac. & Rftop Disconnt: 0 cf

IV. WQv/RRv Provided By Volume Reduction Practices

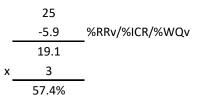
Volume Reduction Practices Not Use to Provide WQv/RRv

WQv/RRv Provd'd By Volume Reduc. Prac.: - cf

V. WQv Provided By Standard Practices

Practice	Drainage Area (Ac)	Imp. Area (Ac)	RRv Prvd'd (cf)	WQv Prvd'd (Non RRv) (cf)	Total WQv Prvd'd (cf)
Infiltration Trench	-	-	-	-	-
Infiltration Basin	-	-	-	-	-
Dry Well	-	-	-	-	-
Underground Infiltration	-	-	-	-	-
Bioretention & Infiltration Bio	2.98	2.58	3600	5370	8970
Dry Swale	-	-	-	-	-
Micropool Extended Det. (P-1)	-	-	-	-	-
Wet Pond (P-2)	-	-	-	-	-
Wet Extended Det. (P-3)	-	-	-	-	-
Multiple Pond System (P-4)	-	-	-	-	-
Pocket Pond (P-5)	-	-	-	-	-
Surface Sand Filter (F-3)	-	-	-	-	-
Perimeter Sand Filter (F-3)	-	-	-	-	-
Organic Filter (F-4)	-	-	-	-	-
Shallow Wetland (W-1)	-	-	-	-	-
Extended Det. Wetland (W-2)	-	-	-	-	-
Pond/Wetland System (W-3)	-	-	-	-	-
Pocket Wetland (W-4)	-	-	-	-	-
Wet Swale (O-2)	-	-	-	-	-
Total	2.98	2.58	3600	5370	8970

WQv Provided By Standard Practices: 8,970 cf


	velpmnt WQv Reqr'd To Be Provided ir	n a Standard	Practice:	: 5,37	/3 (cf	(Part II.)
				٦			
	Standard Practice	WQv Prov		(Dearth II)			
	Area Reduction & Roof Disconn.	0.00	J	(Part III			
	Volume Reduction Standard Practices	- 897	0	(Part IV			
	Total	897		(Part V	.)		
	Total	697	0	_			
	Provd'd WQv in Stndrd Prac. Meet	ts/Exceeds F	Required?	YES	S		
	Excess WQv Provided:	3,596 c	f				
(Thi:	s Volume May Be Applied To Meeting Re	edevelopme	nt WQv Re	equireme	ents W	/here Ap	plicable)
	elopment Areas - Required Water Qua	-	9				
Based	on Chapter 9 Redevelopment Standards	S					
	Project located in an Enhanced	Phosphorus	s Remova	l Area?	Ν	10	
	Table 4.1 New York State Sizing Criteria	а					
		V	Vhere:				
	90% Rule:		Rv=0.05+	-0.009*I(%)	Rv =	0.882
	WQv_(P)(Rv)(A)	A	A=Redeve	lopment	LOD(/	Ac) A =	79.77
	(initial) = 12	F	P = 90% R	tainfall (in	า)	P =	1.00
	Initial Required WQv for Redeve	elopment:	255,2	88 (cf		
	Water Quality Volume Provided Throu	ugh Impervio	ous Cover	[.] Reducti	on		
		aant Araa.	79.75	A			
Existin	g impervious cover in LOD/Redevelopit	ient Area.	19.15	Ac			
Existin	g Impervious Cover in LOD/Redevelopm Removed Impervio		-3.57	AC AC			
		ous Cover:					
	Removed Impervio	ous Cover: emaining:	-3.57	Ac			
	Removed Impervio sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I	ous Cover: emaining: Removed:	-3.57 76.18 4.5%	Ac Ac	lot Co	mpletel	v Meet
	Removed Impervic sting Impervious Cover in LOD/Redev. R	ous Cover: emaining: Removed: an 25% and	-3.57 76.18 4.5%	Ac Ac e Does N	lot Co	mpletel	y Meet
	Removed Impervious sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I Impervious Cover Reduction Is Less The Redevelopment WQv requirements.	ous Cover: emaining: Removed: an 25% and Jse Addition	-3.57 76.18 4.5% Therefor	Ac Ac e Does N ces.			
	Removed Impervio sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I Impervious Cover Reduction Is Less Th	ous Cover: emaining: Removed: an 25% and Jse Addition	-3.57 76.18 4.5% Therefor	Ac Ac e Does N ces.			
	Removed Impervious sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I Impervious Cover Reduction Is Less The Redevelopment WQv requirements.	ous Cover: emaining: Removed: an 25% and Jse Addition tices Which	-3.57 76.18 4.5% Therefor	Ac Ac e Does M ces.		evelopn	
	Removed Impervious sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I Impervious Cover Reduction Is Less The Redevelopment WQv requirements. L WQv Provided Through Standard Prac	ous Cover: emaining: Removed: an 25% and Jse Addition tices Which d Practice:	-3.57 76.18 4.5% Therefor al Practic May Be J 3596	Ac Ac e Does M ces. Applied t	: <mark>o Red</mark> (Part V	evelopn	
	Removed Impervious sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I Impervious Cover Reduction Is Less The Redevelopment WQv requirements. L WQv Provided Through Standard Prace Excess WQv Provided in Standard	ous Cover: emaining: Removed: an 25% and Jse Addition tices Which d Practice: al WQv for I	-3.57 76.18 4.5% Therefor al Practic May Be <i>I</i> 3596 Redevep.	Ac Ac e Does M ces. Applied t cf (: <mark>o Red</mark> (Part V	evelopn	
	Removed Impervious sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I Impervious Cover Reduction Is Less The Redevelopment WQv requirements. L WQv Provided Through Standard Prace Excess WQv Provided in Standard Stndrd Prac. WQv as % of Initia Total Standard Practice WQv & Impervious	ous Cover: emaining: Removed: an 25% and Jse Addition tices Which d Practice: al WQv for I vious Cover	-3.57 76.18 4.5% Therefor al Practic May Be A 3596 Redevep. Reductio	Ac Ac e Does M ces. Applied t cf (: 1.45 n	:o Red (Part N %	evelopn	
	Removed Impervious sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I Impervious Cover Reduction Is Less The Redevelopment WQv requirements. L WQv Provided Through Standard Prac Excess WQv Provided in Standard Stndrd Prac. WQv as % of Initia Total Standard Practice WQv & Impervious 4.5% Percentage of Exist. Impervious	ous Cover: emaining: Removed: an 25% and Jse Addition tices Which d Practice: al WQv for I vious Cover ious Cvr Rer	-3.57 76.18 4.5% Therefor al Practic May Be A 3596 Redevep. Redevep.	Ac Ac e Does M ces. Applied t cf (1.49	: <mark>o Red</mark> (Part V % %ICR	evelopn /l.)	nent
	Removed Impervious sting Impervious Cover in LOD/Redev. R Percentage of Exist. Impervious Cvr I Impervious Cover Reduction Is Less The Redevelopment WQv requirements. L WQv Provided Through Standard Prace Excess WQv Provided in Standard Stndrd Prac. WQv as % of Initia Total Standard Practice WQv & Impervious	ous Cover: emaining: Removed: an 25% and Jse Addition tices Which d Practice: al WQv for I vious Cover ious Cvr Rem	-3.57 76.18 4.5% Therefor al Practic May Be A 3596 Redevep. Redevep.	Ac Ac e Does M ces. Applied t cf (1.49	: <mark>o Red</mark> (Part V % %ICR	evelopn	nent

Impervious Cover Reduction and WQv Provided in Standard Practices Is Less Than 25% and Therefore Does Not Completely Meet Redevelopment WQv Requirements. Use Additional Practices.

Total WQv Required To Be Provided in an Alternative Practice

5.9% :WQv Provd'd through Imp. Cover Reduction & Stndrd Prac.'s (%RRv & %ICR & %WQv)

WQv (Alternative Prac.) = WQv Initial/Redevelopment x ([25-%RRv-%ICR-%WQv] x 3)/100

57.4% of Initial WQv/Redevelopment To Be Provided in an Alternative Practice

146,422 cf of WQv Required To Be Provided in an Alterative Practice

VIII. Total Water Quality Volume Provided by Alternative Practices

Project located in an Enhanced Phosphorus Removal Area? NO

DA	Drainage Area (Ac)	Impervious Area (Ac)	% Imperv.	Rv	Available WQv (cf)	Pk 10yr Flow (cfs)	Unit Designation
D.A. #2B	11.87	11.87	100%	0.95	40941	51.38	-
D.A. #2D	17.42	17.30	99%	0.94	59680		
	14.00	13.5	96%	0.9178571	46646	-	-
	Total				147267		

Total WQv Provided with Alternative Practices: 147267 cf

cf

Required WQv To Be Provided in an Alternative Practice: 146422

Meets Requirements for Redevelopment WQv? YES

IX. Total WQv Required Summary

Project Classification	WQv Method	Reqr'd WQv (cf)	Reqr'd WQv (cf)	Reqr'd WQv (Ac-ft)	
New Development	Standard	5,373	5,373	0.123	
	Imp. Remvl	11,419			
Redevelopment	Standard	3,596	161,436	3.706	
	Alternative	146,422			
Total	-	166,810	166,810	3.829	

X. Total WQv Provided Summary

Project Classification	WQv Method Provd'd WQv (cf)		Provd'd WQv (cf)	Provd'd WQv (Ac-ft)
New Development	Standard	5,373	5,373	0.123
	Imp. Remvl	11,419		
Redevelopment	Standard	3,596	162,281	3.725
	Alternative	147,267		
Total	-	167,655	167,655	3.849

Provided WQv Meets/Exceeds Required WQv? YES

Minimum Required & Provided RRv Calculations Discharge Point #2

Enter the Soils I	Data for th	e site	
Soil Group	Acres	S	
A	0.00	55%	
В	0.00	40%	
C	11.96	30%	
D	71.86	20%	New Development Area
Total Area	83.81		Total Area = New Development Area
Calculate the M	linimum Rl	Rv	
S =	0.214		
Impervious =	1.367	acre	
Precipitation	1.00	in	
Rv	0.95		
Minimum RRv	1010	ft3	
	0.023	af]

Drainage Area	Practice	Practice Name	Total Area	Imp. Area	RRv Provided (cf)	RRv Provided (Ac- ft)
D.A. #2A-II	Bioretention	B-6	2.98	2.58	3600	0.083
					-	-
Total	-	-	2.98	2.58	3600	0.083

RRv Provided Exceeds Minimum RRv? Yes

Version 1.7 Last Updated: 10/02/2015 Total Water Quality Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to postdevelopment 1 year runoff volume)?..... No **Design Point:** 2 Manually enter P, Total Area and Impervious Cover. P= 1.00 inch **Breakdown of Subcatchments** Percent WQv Catchment **Total Area Impervious** Area Description Impervious Rv (ft^3) Number (Acres) (Acres) % 40.03 DA 2A-I 35.39 88% 0.85 122,884 1 2 2.98 2.58 87% 0.83 8,970 DA 2A-II 3 11.52 7.69 67% 0.65 27,223 DA 2C 4 11.87 11.88 100% 0.95 40,950 DA 2B 5 17.42 17.30 99% 0.94 59,690 DA 2D 6 7 8 9 10 Subtotal (1-30) 74.84 259,718 Subtotal 1 83.81 89% 0.85 259,718 Initial WQv 5.96 af Total 83.81 74.84 89% 0.85

Identify Runoff Reduction Techniques By Area							
Technique	Total Contributing Area	Contributing Impervious Area	Notes				
	(Acre)	(Acre)					
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf				
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet				
Filter Strips	0.00	0.00					
Tree Planting	0.00		impervious area may be subtracted per				
Total	0.00	0.00					

Recalculate WQv after application of Area Reduction Techniques						
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ³)	
"< <initial td="" wqv"<=""><td>83.81</td><td>74.84</td><td>89%</td><td>0.85</td><td>259,718</td><td></td></initial>	83.81	74.84	89%	0.85	259,718	
Subtract Area	0.00	0.00				
WQv adjusted after Area Reductions	83.81	74.84	89%	0.85	259,718	
Disconnection of Rooftops		0.00				
Adjusted WQv after Area Reduction and Rooftop Disconnect	83.81	74.84	89%	0.85	259,718	5.9

Runoff Reduction Volume and Treated volumes							
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated	
			(acres)	(acres)	cf	cf	
	Conservation of Natural Areas	RR-1	0.00	0.00			
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00			
	Tree Planting/Tree Pit	RR-3	0.00	0.00			
	Disconnection of Rooftop Runoff	RR-4		0.00			
	Vegetated Swale	RR-5	0.00	0.00	0		
olu	Rain Garden	RR-6	0.00	0.00	0		
a/	Stormwater Planter	RR-7	0.00	0.00	0		
Are	Rain Barrel/Cistern	RR-8	0.00	0.00	0		
	Porous Pavement	RR-9	0.00	0.00	0		
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0		
R	Infiltration Trench	I-1	0.00	0.00	0	0	
N/R	Infiltration Basin	I-2	0.00	0.00	0	0	
Ps v ity	Dry Well	I-3	0.00	0.00	0	0	
rd SMPs Capacity	Underground Infiltration System	I-4	0.00				
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	2.98	2.58	3600	5370	
Sta	Dry swale	0-1	0.00	0.00	0	0	
	Micropool Extended Detention (P-1)	P-1					
	Wet Pond (P-2)	P-2					
	Wet Extended Detention (P-3)	P-3					
	Multiple Pond system (P-4)	P-4					
Standard SMPs	Pocket Pond (p-5)	P-5					
	Surface Sand filter (F-1)	F-1					
d S	Underground Sand filter (F-2)	F-2					
dar	Perimeter Sand Filter (F-3)	F-3					
Star	Organic Filter (F-4	F-4					
	Shallow Wetland (W-1)	W-1					
	Extended Detention Wetland (W-2	W-2					
	Pond/Wetland System (W-3)	W-3					
	Pocket Wetland (W-4)	W-4					
	Wet Swale (O-2)	0-2					
	Totals by Area Reduction		0.00	0.00	0		
	Totals by Volume Reduction		0.00	0.00	0		
	Totals by Standard SMP w/RRV		2.98	2.58	3600	5370	
	Totals by Standard SMP	\rightarrow	0.00	0.00		0	

Т	Totals (Area + Volume + all SMPs) $ ightarrow$		2.98	2.58	3,600	5,370
	Impervious Cover V	error				
	Total Area V	error				

Bioretention Worksheet

(For use on HSG C or D Soils with underdrains)

k

Af=WQv*(df)/[k*(hf+df)(tf)]

- Af Required Surface Area (ft2)
- WQv Water Quality Volume (ft3)
- *df* Depth of the Soil Medium (feet)
- *hf* Average height of water above the planter bed
- *tf* Volume Through the Filter Media (days)
- The hydraulic conductivity [ft/day], can be varied depending on the properties of the soil media. Some reported conductivity values are: **Sand** 3.5 ft/day (City of Austin 1988); **Peat** 2.0 ft/day (Galli 1990);
- Leaf Compost 8.7 ft/day (Claytor and Schueler, 1996); Bioretention Soil (0.5 ft/day (Claytor &

Design Point:	2						
Enter Site Data For Drainage Area to be Treated by Practice							
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Precipitation (in)	Description
2	2.98	2.58	0.87	0.83	8969.73	1.00	DA 2A-II
Enter Impervious by Disconnection			87%	0.83	8,970	< <wqv ac<br="" after="">Disconnected R</wqv>	
Enter the portion of the WQv that is not reduced for all practices ft^3 routed to this practice.							
			Soil Inform	ation			
Soil Group							
Soil Infiltration F	Rate		in/hour				
Using Underdrains? Yes Okay							
		Calcula	ite the Minim	um Filte	er Area		
				V	'alue	Units	Notes
	WQv			8,970		ft ³	
Enter	Depth of Soil M	edia	df	2.5		ft	2.5-4 ft
Enter H	ydraulic Conduc	ctivity	k	0.5		ft/day	
Enter Ave	rage Height of I	Ponding	hf		0.5	ft	6 inches max.
Ei	nter Filter Time		tf		2	days	
Req	uired Filter Are	ea	Af	7	475	ft ²	
		Determi	ne Actual Bio	-Retenti	on Area		
Filter Width		1	ft				
Filter Length		7500	ft				
Filter Area		7500	ft ²				
Actual Volume F	Provided	9000	ft ³				
		Dete	ermine Runof	f Reduct	tion		
Is the Bioretenti another practice	-	; flow to	No	Select Practice			
RRv		3,600					
RRv applied		3,600	ft ³	This is 40% of the storage provided or WQv whichever is less.			
Volume Treated		5,370	ft ³	This is the portion of the WQv that is not reduced in the practice.			
Volume Directed	d	0	<i>ft</i> ³ This volume is directed another practice				

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/30/22 By: SLG

Required Water Quality Volume (WQv) Calculations

Discharge Point #3

I. Project Delineation

Classification	Drainage Area (Ac)	Impervious Area in D.A. (Ac)	% Imp.	Rv	Exist. WQv Provd'd (Ac-ft)
New Development	13.000	12.751	98%	0.93	-
Redevelopment (Without existing WQv provided)	0.000	0.000	-	-	-
Redevelopment (With Existing WQv provided in a standard practice)	42.981	12.94	30%	0.32	1.467
Total	55.981	25.687	-	-	1.467

Project Delineation - By Drainage Area (D.A.)

Project Delineation - By Limits of Disturbance (LOD)

Classification	LOD Area (Ac)	Impervious Area in LOD (Ac)	% Imp.	Rv	Exist. WQv Provd'd (Ac-ft)
New Development	13.000	12.751	98.08%	0.933	-
Redevelopment (Without existing WQv provided)	0.000	0.000	-	-	-
Redevelopment (With Existing WQv provided in an alternative practice)	30.660	9.591	31%	0.332	1.467
Total	43.660	22.342	-	-	1.467

II. Existing WQv Provided

Existing Drainage Area to Pond:	51.300	Ac		
Existing Impervious Area to Pond:	16.711	Ac		
% Impervious Area:	32.58%			
Rv [0.05+0.009*%l]:	0.34			
P = 90% Rainfall (in)	1.00	in		
Existing WQv Provided:	1.467	Ac-ft	=	63906 cf

II. New Development Areas - Required WQv

Project located in an Enhanced Phosphorus Removal Area?

NO

From Chapter 4: New York State Stormwater Management Design Manual:

Table 4.1 New York State Sizing Criteria

90% Rule:

WQv	(P)(Rv)(A)
(initial) =	12

Where:		
Rv=0.05+0.009*I(%)	Rv =	0.933
A=New Develop't D.A.(Ac)	A =	13.00
P = 90% Rainfall (in)	P =	1.00

cf

Required WQv for New Development: 44,017

III. WQv/RRv Provided By Area Reduction Practices & Rooftop Disconnect

Area Reduction Practices and Rooftop Disconnect Not Used To Provide WQv/RRv

WQv/RRv Prvd'd By Area Reduc. Prac. & Rftop Disconnt: 0 cf

IV. WQv/RRv Provided By Volume Reduction Practices

Volume Reduction Practices Not Use to Provide WQv/RRv

WQv/RRv Provd'd By Volume Reduc. Prac.: - cf

V. WQv Provided By Standard Practices

Practice	Drainage Area (Ac)	Imp. Area (Ac)	RRv Prvd'd (cf)	WQv Prvd'd (Non RRv) (cf)	Total WQv Prvd'd (cf)
Infiltration Trench	-	-	-	-	-
Infiltration Basin	-	-	-	-	-
Dry Well	-	-	-	-	-
Underground Infiltration	-	-	-	-	-
Bioretention & Infiltration Bio	14.94	11.59	3360	5018	8378
Dry Swale	-	-	-	-	-
Micropool Extended Det. (P-1)	-	-	-	-	-
Wet Pond (P-2)	17.24	11.98	0	21796	21796
Wet Extended Det. (P-3)	-	-	-	-	-
Multiple Pond System (P-4)	-	-	-	-	-
Pocket Pond (P-5)	-	-	-	-	-
Surface Sand Filter (F-3)	-	-	-	-	-
Perimeter Sand Filter (F-3)	-	-	-	-	-
Organic Filter (F-4)	-	-	-	-	-
Shallow Wetland (W-1)	-	-	-	-	-

Extended Det. Wetland (W-2)	-	-	-	-	-
Pond/Wetland System (W-3)	-	-	-	-	-
Pocket Wetland (W-4)	-	-	-	-	-
Wet Swale (O-2)	-	-	-	-	-
Total	32.18	23.57	3360	26814	30174

WQv Provided By Standard Practices: 30,174

VI. Total WQv Required/Provided By Standard Practices

New Develpmnt WQv Reqr'd To Be Provided in a Standard Practice: 44,017 cf (Part II.)

Standard Practice	WQv Provd'd (cf)	
Existing Standard Practice	63906	(Part I.)
Area Reduction & Roof Disconn.	0.00	(Part III.)
Volume Reduction	-	(Part IV.)
New Standard Practices	30174	(Part V.)
Total	94080	

Provd'd WQv in Stndrd Prac. Meets/Exceeds Required? YES

Excess WQv Provided: 50,063 cf

(This Volume May Be Applied To Meeting Redevelopment WQv Requirements Where Applicable)

VII. Redevelopment Areas - Required Water Quality Volume

Based on Chapter 9 Redevelopment Standards

Project located in an Enhanced Phosphorus Removal Area? NO

Table 4.1 New York State Sizing Criteria

00/0 i tuic.	90%	Rule:
--------------	-----	-------

WQv (P)(Rv)(A)(initial) = 12

 Where:
 Rv=0.05+0.009*I(%)
 Rv =
 0.321

 A=Redevelopment DA (Ac)
 A =
 42.98

 P = 90% Rainfall (in)
 P =
 1.00

cf

cf

Required WQv for Redevelopment: 50,063

WQv Provided Through Standard Practices Which May Be Applied to Redevelopment

Excess WQv Provided in Standard Practice: 50063 cf (Part VI.)

Required WQv is met through existing pond and new pond and bioretention facility standard practices. No Further Practices Needed

VIII. Total Water Quality Volume Provided by Alternative Practices

Total WQv Provided with Alternative Practices: 0 cf

IX. Total WQv Required Summary

Project Classification	WQv Method	Reqr'd WQv (cf)	Reqr'd WQv (cf)	Reqr'd WQv (Ac-ft)
New Development	Standard	44,017	44,017	1.010
	Imp. Remvl	0		
Redevelopment	Standard	50,063	50,063	1.149
	Alternative	0		
Total	-	94,080	94,080	2.160

X. Total WQv Provided Summary

Project Classification	WQv Method	Provd'd WQv (cf)	Provd'd WQv (cf)	Provd'd WQv (Ac-ft)
New Development	Standard	44,017	44,017	1.010
	Imp. Remvl	0		
Redevelopment	Standard	50,063	50,063	1.149
	Alternative	0		
Total	-	94,080	94,080	2.160

Provided WQv Meets/Exceeds Required WQv? YES

Minimum Required & Provided RRv Calculations Discharge Point #3

Enter the Soils	Data for th	e site	
Soil Group	Acres	S	
А	0.00	55%	
В	0.00	40%	
С	0.00	30%	
D	55.98	20%	New Development Area
Total Area	55.98		Total Area = New Development Area
Calculate the M	linimum Rl	Rv	
S =	0.200		
Impervious =	12.751	acre	
Precipitation	1.00	in	
Rv	0.95		
Minimum RRv	8794	ft3]
	0.202	af]

Drainage Area	Practice	Practice Name	Total Area	Imp. Area	RRv Provided (cf)	RRv Provided (Ac- ft)
D.A. #3A-II	Bioretention	B-5	14.94	11.59	3360	0.077
					-	-
Total	-	-	14.94	11.59	3360	0.077

RRv Provided Exceeds Minimum RRv? No

Version 1.7 Last Updated: 10/02/2015 Total Water Quality Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to postdevelopment 1 year runoff volume)?..... No **Design Point:** 2 Manually enter P, Total Area and Impervious Cover. P= 1.00 inch **Breakdown of Subcatchments** Percent WQv Catchment **Total Area Impervious** Area Impervious Rv Description (ft^3) Number (Acres) (Acres) % 14.94 11.59 78% 0.75 40,586 DA: 3A-II to B-5 1 2 2.30 0.38 17% 0.20 1,672 DA: 3A-III to P-2 DA-3A-I 3 31.33 12.22 39% 0.40 45,620 4 7.41 1.49 20% 0.23 6,202 DA: 3B 5 6 7 8 9 10 Subtotal (1-30) 25.69 94,080 Subtotal 1 55.98 46% 0.46 94,080 **Initial WQv** 2.16 af Total 55.98 25.69 46% 0.46

Identify Runoff Reduction Techniques By Area							
Technique	Total Contributing Area Contributing		Notes				
	(Acre)	(Acre)					
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf				
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet				
Filter Strips	0.00	0.00					
Tree Planting	0.00	0.00	impervious area may be subtracted per				
Total	0.00	0.00					

Recalculate WQv after application of Area Reduction Techniques							
	Total Area (Acres)			Runoff Coefficient Rv	WQv (ft ³)		
"< <initial th="" wqv"<=""><th>55.98</th><th>25.69</th><th>46%</th><th>0.46</th><th>94,080</th><th></th></initial>	55.98	25.69	46%	0.46	94,080		
Subtract Area	0.00	0.00					
WQv adjusted after Area Reductions	55.98	25.69	46%	0.46	94,080		
Disconnection of Rooftops		0.00					
Adjusted WQv after Area Reduction and Rooftop Disconnect	55.98	25.69	46%	0.46	94,080	2.16	

	Runoff Reduction V	/olume a	and Treated vo	olumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
duc	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Red	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
olu	Rain Garden	RR-6	0.00	0.00	0	
a/V	Stormwater Planter	RR-7	0.00	0.00	0	
Are	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
Rv	Infiltration Trench	I-1	0.00	0.00	0	0
∕/R	Infiltration Basin	I-2	0.00	0.00	0	0
Ps ۷ ity	Dry Well	I-3	0.00	0.00	0	0
rd SMPs Capacity	Underground Infiltration System	I-4	0.00			
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	14.94	11.59	15629	24957
Sta	Dry swale	0-1	0.00	0.00	0	0
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2	17.24	11.98		21796.000
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
s	Pocket Pond (p-5)	P-5				
MPŝ	Surface Sand filter (F-1)	F-1				
Standard SMP	Underground Sand filter (F-2)	F-2				
dar	Perimeter Sand Filter (F-3)	F-3				
tan	Organic Filter (F-4	F-4				
S	Shallow Wetland (W-1)	W-1				
	Extended Detention Wetland (W-2	W-2				
	Pond/Wetland System (W-3)	W-3				
	Pocket Wetland (W-4)	W-4				
	Wet Swale (O-2)	0-2				
	Totals by Area Reduction	\rightarrow	0.00	0.00	0	
	Totals by Volume Reduction	\rightarrow	0.00	0.00	0	
	Totals by Standard SMP w/RRV	\rightarrow	14.94	11.59	15629	24957
	Totals by Standard SMP	\rightarrow	17.24	11.98		21796

Т	otals (Area + Volume + all SMPs)	32.18	23.57	15,629	46,753	
	Impervious Cover V	error				
	Total Area V	error				

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/30/22 By: SLG

Provided Water Quality Volume (WQv) Calculations

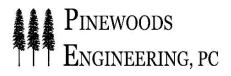
Discharge Point #3

I. Breakdown of Subcatchments

Drainage Area	Total Area (Ac)	Imperv. Area (Ac)	Percent Imperv.	Rv	WQv* (cf)	Practice Description	Practice Name
D.A. #3A-II	14.94	11.59	78%	0.748	40586	Bioretention	B-5
D.A. #3A-III	2.30	0.38	17%	0.200	1672	Wet Pond	P-2

Total:

11.98


*Based on P = 1.00 in

II. Provided WQv

D.A.	Practice	Total Area (Ac)	Imperv. Area (Ac)	WQv Provided (cf)	WQv Provided (Ac-ft)
D.A. #3A-II	B-5	14.94	11.59	8378	0.192
D.A. #3A-III	P-2	2.30	0.38	21796	0.500
	Total	17.24	11.98	30174	0.693

Exist. Standard Practice WQv to remain/be replaced =

cf

Data

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/30/22 By: SLG

Channel Protection Volume Calculations - Discharge Pt #1

Channel Protection Volume Required for New Development

Method: Appendix B of the Stormwater Management Design Manual for Storage Volume & TR-55 Graphical Peak Discharge Method

New Development Drainage Area (A) =	16.000	Ac	
Runoff Curve number (CN) =	98		(100% imperv.)
Time of Concentration (Tc) =	0.10	hr	(assumed max.)
Rainfall Distribution Type =	II		
Percentage that is Pond/Swamp areas =	0%		
Storm Frequency Used =	1-Year		
24-Hr Precipitation Value (P) =	1.84	in	(See Rainfall Data)
Initial abstration (Ia) =	0.041	in	(Table 4-1 of TR55)
Computed			
la/P =	0.02		(min. value = 0.1)
Unit Peak Discharge (q _u) =	1000	csm/in	(Exhibit 4-II, TR-55)
Ratio of pk discharge $outflw/inflw (q_o/q_i)^* =$	0.02		(Fig. B-1, App. B)
*Based on T=24-hr		_	
Ratio of reqr'd. storage volume to runoff			(Fig. B-2 App. B
volume (Vs/Vr) =	0.458	_	NYSSMDM)
Potential max. runoff retention (S) =	0.204	_	(Eq. 2-4, TR-55)
Runoff (Q) =	1.616	in	(Eq. 2-3, TR-55)
Required Storage Volume (Vs) =	0.987	Ac-ft	(Eq. 2.1.17, App B)

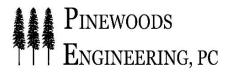
Channel Protection Volume Required for Redevelopment

Applicability Determination: Will post-development 1-yr, 24-hr discharge rate and velocity be less than or equal to existing conditions?

Yes, both the post-development rate and velocity will be at, or below, Answer: existing conditions

Redevelmnt CPv Reqrmnts: Already met through rate & velocity attenuation

Total Required Channel Protection Volume


CPv Required for New Development Areas = 0.987 Ac-ft

CPv Required for Redevelopment Areas = 0.000 Ac-ft

Total Required CPv = 0.987 Ac-ft

Total Provided Channel Protection Volume

	Practice	Vol. Prvded		Notes
1)	Pond (P-1)	1.000	Ac-ft	Detention Storage from Elev. 746.5 to
2)	RRv	0.498	Ac-ft	748.63 (WSE to 1-Yr Ponding Elev.)
[Total CPv Provd'd =	1.498	Ac-ft	

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/30/22 By: SLG

Channel Protection Volume Calculations - Discharge Pt #2

Channel Protection Volume Required for New Development

Method: Appendix B of the Stormwater Management Design Manual for Storage Volume & TR-55 Graphical Peak Discharge Method

Data			
New Development Drainage Area (A) =	5.000	Ac	
Runoff Curve number (CN) =	98		(100% imperv.)
Time of Concentration (Tc) =	0.10	hr	(assumed max.)
Rainfall Distribution Type =		_	
Percentage that is Pond/Swamp areas =	0%	_	
Storm Frequency Used =	1-Year	_	
24-Hr Preceipitation Value (P) =	1.84	in	(See Rainfall Data)
Initial abstration (Ia) =	0.041	in	(Table 4-1 of TR55)
Computed			
Ia/P =	0.02		(min. value = 0.1)
Unit Peak Discharge (q _u) =	1000	csm/in	(Exhibit 4-II, TR-55)
Ratio of pk discharge outflw/inflw $(q_o/q_i)^* =$	0.02		(Fig. B-1, App. B)
*Based on T=24-hr		_	
Ratio of reqr'd. storage volume to runoff			(Fig. B-2 of App. B
volume (Vs/Vr) =	0.458	_	NYSSMDM)
Potential max. runoff retention (S) =	0.204	_	(Eq. 2-4, TR-55)
Runoff (Q) =	1.616	in	(Eq. 2-3, TR-55)
Required Storage Volume (Vs) =	0.308	Ac-ft	(Eq. 2.1.17, App B)

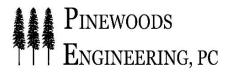
Channel Protection Volume Required for Redevelopment

Applicability Determination: Will post-development 1-yr, 24-hr discharge rate and velocity be less than or equal to existing conditions?

Yes, both the post-development rate and velocity will be at, or below, Answer: existing conditions

Redevelmnt CPv Reqrmnts: Already met through rate & velocity attenuation

Total Required Channel Protection Volume


CPv Required for New Development Areas = 0.308 Ac-ft

CPv Required for Redevelopment Areas = 0.000 Ac-ft

Total Required CPv = 0.308 Ac-ft

Total Provided Channel Protection Volume

	Practice	Vol. Prvded		Notes
1)			Ac-ft	Detention Storage from Elev. 738.05
2)	RRv	0.083	Ac-ft	to 740.8 (WSE to 1-Yr Ponding Elev.)
	Total CPv Provd'd =	0.083	Ac-ft]

Data

Project: Buffalo Bills Stadium Project No.: 22-016 Date: 9/3 By: 9/30/22

Channel Protection Volume Calculations - Discharge Pt #3

Channel Protection Volume Required for New Development

Method: Appendix B of the Stormwater Management Design Manual for Storage Volume & TR-55 Graphical Peak Discharge Method

New Development Drainage Area (A) =	13.000	Ac	
Runoff Curve number (CN) =	98		(100% imperv.)
Time of Concentration (Tc) =	0.10	hr	(assumed max.)
Rainfall Distribution Type =	II		
Percentage that is Pond/Swamp areas =	0%		
Storm Frequency Used =	1-Year	_	
24-Hr Precipitation Value (P) =	1.84	in	(See Rainfall Data)
Initial abstration (Ia) =	0.041	in	(Table 4-1 of TR55)
Computed			
la/P =	0.02		(min. value = 0.1)
Unit Peak Discharge (q _u) =	1000	csm/in	(Exhibit 4-II, TR-55)
Ratio of pk discharge $outflw/inflw (q_o/q_i)^* =$	0.02		(Fig. B-1, App. B)
*Based on T=24-hr		_	
Ratio of reqr'd. storage volume to runoff			(Fig. B-2 of App. B
volume (Vs/Vr) =	0.458	_	NYSSMDM)
Potential max. runoff retention (S) =	0.204	_	(Eq. 2-4, TR-55)
Runoff (Q) =	1.616	in	(Eq. 2-3, TR-55)
Required Storage Volume (Vs) =	0.802	Ac-ft	(Eq. 2.1.17, App B)

Channel Protection Volume Required for Redevelopment

Applicability Determination: Will post-development 1-yr, 24-hr discharge rate and velocity be less than or equal to existing conditions?

Yes, both the post-development rate and velocity will be at, or below, Answer: existing conditions

Redevelmnt CPv Reqrmnts: Already met through rate & velocity attenuation

Total Required Channel Protection Volume

CPv Required for New Development Areas = 0.802 Ac-ft

CPv Required for Redevelopment Areas = 0.000 Ac-ft

Total Required CPv = 0.802 Ac-ft

Total Provided Channel Protection Volume

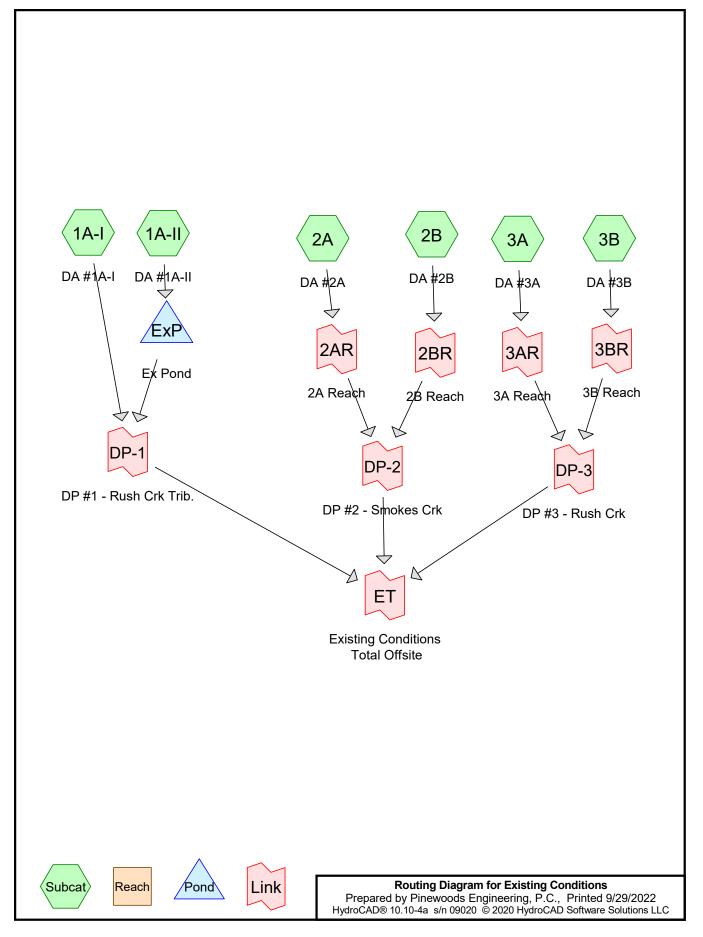
	Practice	Vol. Prvded		Notes		
1)	Pond (P-2)	1.085	Ac-ft	Detention Storage from Elev. 736.0 to		
2)	RRv	0.077	Ac-ft	737.64 (WSE to 1-Yr Ponding Elev.)		
	Total CPv Provd'd =	1.162	Ac-ft			

#	NOI Question	Discharge Point #1	Discharge Point #2	Discharge Point #3	Total Report	ted Value
		cf	cf	cf	cf	af
	Total WQv Required for New Development	55,169	5,373	44,017	104,560	2.400
	Total WQv Required for Redevelopment (Standard/Imp. Reduc.)	15,936	15,015	50,063	81,013	1.860
	Total WQv Required for Redevelopment (Alternative)	0	146,422	0	146,422	3.361
28	Total Water Quality Volume (WQv) Required	71,105	166,810	94,080	331,995	7.622
29	Total RRv Provided	21,696	3,600	3,360	28,656	0.658
31	Is RRv Provided >/= WQv Required?				NO	
32	Minimum RRv	11,034	1,010	8,794	20,838	0.478
32 a	Is RRv Provided >/= Minimum RRv Required?				YES	
	Total WQv Treated from Green & Standard Practices	52,379	16,788	26,814	69,168	1.588
	Total WQv Treated from Alternative Practices	0	147,267	0	147,267	3.38
	Total WQv Replaced/Maintained from Existing Practices	0	0	63906	0	0.00
33a	Total WQv Treated	52,379	164,055	90,720	307,154	7.051
34	Sum of Volume Reduced & Treated	74,075	167,655	94,080	335,810	7.709
35	Is Sum RRv Provided and WQv Provided >/= WQv Required?		-	-	YES	

NOI Questions (Discharge Point #1, #2 & #3 Combined)

Total

Existing 1-Yr Peak Rate	154.04	
Existing 1-Yr Vol	16.037	
Proposed 1-Yr Peak Rate	125.79	Check OK
Proposed 1-Yr Vol	18.06	
% Reduction	18%	
Vol Increase	2.023	
-		-
Existing 10-Yr Peak Rate	319.89	
Existing 10-Yr Vol	34.765	1
Proposed 10-Yr Peak Rate	263.17	Check OK
Proposed 10-Yr Vol	37.715	1
% Reduction	18%	1
Vol Increase	2.950	1
		-
Existing 25-Year Peak Rate	415.86	
Existing 25-Year Vol	45.645	
Proposed 25-Yr Peak Rate	355.68	Check OK
Proposed 25-Yr Peak Rate	48.92	
% Reduction	14%	1
Vol Increase	3.275	1
-		-
Existing 100-Yr Peak Rate	607.6	
Existing 100-Yr Vol	67.36	
Proposed 100-Yr Peak Rate	541.9	Check OK
Proposed 100-Yr Vol	71.071	
% Reduction	11%]
Vol Increase	3.711]
•		-


	0.987	DP-1
	0.308	DP-2
	0.802	DP-3
CPv Reqrd (Ac-ft)	2.097	Total

	1.498	DP-1
	0.083	DP-2
	1.162	DP-3
CPv Prvdd (Ac-ft)	2.743	Total
•		
	No	CPv Waiv

No CPv Waived? Waived Because: N/A

Local Requirements:

N/A

Summary for Subcatchment 1A-I: DA #1A-I

Runoff = 25.97 cfs @ 12.39 hrs, Volume= 3.181 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.84"

Area	(ac) C	N Dese	cription					
0.	.053 7	74 >759	% Grass c	, HSG C				
32.	.764 8	30 >75	% Grass c	over, Good,	, HSG D			
0.	.000 9	8 Pave	ed parking	, HSG C				
10.	.684 9		ed parking					
-			/el surface	·				
			el surface	,				
1.	1.631 77 Woods, Good, HSG D							
	52.303 86 Weighted Average							
	.619		7% Pervio					
10.	.684	20.4	3% Imper	∕ious Area				
Та	l e e este	Clana	Valasity	Consolt	Description			
Tc (min)	Length	Slope (ft/ft)	Velocity	Capacity	Description			
(min)	(feet)		(ft/sec)	(cfs)				
30.2	150	0.0110	0.08		Sheet Flow,			
1.4	139	0.0110	1.69		Grass: Dense n= 0.240 P2= 2.20"			
1.4	139	0.0110	1.09		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps			
22	513	0 0060	3 00	102 86	Tran/Vee/Pect Channel Flow			
2.2	513	0.0060	3.90	102.86	Trap/Vee/Rect Channel Flow, Bot W=25.00', D=0.80', Z= 10.0 '/', Top W=41.00'			
2.2	513	0.0060	3.90	102.86	Bot.W=25.00' D=0.80' Z= 10.0 '/' Top.W=41.00'			
		0.0060		102.86	Bot.W=25.00' D=0.80' Z= 10.0 '/' Top.W=41.00' n= 0.022 Earth, clean & straight			
2.2 <u>6.7</u> 40.5	513 <u>1,798</u> 2,600	0.0060 Total	3.90 <u>4.50</u>	102.86	Bot.W=25.00' D=0.80' Z= 10.0 '/' Top.W=41.00'			

Summary for Subcatchment 1A-II: DA #1A-II

Runoff = 31.15 cfs @ 11.98 hrs, Volume= 1.564 af, Depth= 1.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.84"

Area	(ac) (CN Des	cription					
0.	.000	74 >75	% Grass c	over, Good	, HSG C			
4.	4.803 80 >75% Grass cover, Good, HSG D							
0.	0.000 98 Paved parking, HSG C							
1.								
0.000 96 Gravel surface, HSG C								
10.799 96 Gravel surface, HSG D								
	17.147 92 Weighted Average							
	.602		9% Pervio					
1.	.545	9.01	% Impervi	ous Area				
Та	Longth	Clana	Valaaity	Consoitu	Description			
Tc (min)	Length (feet)		Velocity (ft/sec)	Capacity (cfs)	Description			
(min)				(015)				
2.7	150	0.0100	0.94		Sheet Flow,			
0.3	25	0.0100	1.61		Smooth surfaces n= 0.011 P2= 2.20"			
0.5	20	0.0100	1.01		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps			
3.9	930	0.0100	3.93	33.44	Trap/Vee/Rect Channel Flow,			
0.9	300	0.0100	5.55	55.44	Bot.W=15.00' D=0.50' Z= 4.0 '/' Top.W=19.00'			
					n = 0.022 Earth, clean & straight			
0.3	90		4.50		Direct Entry, Pipe Flow			
-					,,,			
7.2	1,195	Total						

Summary for Subcatchment 2A: DA #2A

Runoff	=	101.79 cfs @	12.14 hrs,	Volume=	8.142 af, Depth= 1.33"
--------	---	--------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.84"

Area ((ac) C	N Dese	cription						
1.9	970 7								
4.	741 8	30 >75 [°]	% Grass co	over, Good,	HSG D				
15.	520 9	8 Pave	ed parking	, HSG C					
26.0	004 9	8 Pave	ed parking	, HSG D					
			el surface/						
19.613 96 Gravel surface, HSG D									
0.595 77 Woods, Good, HSG D									
73.4	73.409 95 Weighted Average								
31.8	885	43.4	3% Pervio	us Area					
41.	524	56.5	7% Imper	∕ious Area					
_				_					
Tc	Length	Slope	Velocity		Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.9	98	0.0100	0.86		Sheet Flow,				
					Smooth surfaces n= 0.011 P2= 2.20"				
13.7	65	0.0150	0.08		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 2.20"				
0.7	80	0.0150	1.97		Shallow Concentrated Flow,				
					Unpaved Kv= 16.1 fps				
0.8	88	0.0090	1.93		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
2.8	360	0.0110	2.13		Shallow Concentrated Flow, Gravel				
			4 50		Paved Kv= 20.3 fps				
4 -									
<u> </u>	<u>446</u> 1,137	Total	4.50		Direct Entry, Pipe Flow				

Existing Conditions

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 2B: DA #2B

Runoff = 2.31 cfs @ 12.21 hrs, Volume= 0.218 af, Depth= 1.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.84"

_	Area	(ac) C	N Des	cription					
	0.	000 7	′4 >75°	% Grass co	over, Good	, HSG C			
	0.	039 8	80 >75 ^c	% Grass co	over, Good	, HSG D			
	0.	000 9	8 Pave	ed parking	, HSG C				
	-			ed parking					
	0.000 96 Gravel surface, HSG C								
				/el surface					
_	0.000 77 Woods, Good, HSG D								
1.841 96 Weighted Average									
		614		7% Pervio					
	0.	227	12.3	3% Imper	ious Area/				
	_				• •	— • • • •			
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	9.4	47	0.0200	0.08		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 2.20"			
	0.9	55	0.0200	1.01		Sheet Flow,			
	0.0	40	0 0000	0.00		Smooth surfaces n= 0.011 P2= 2.20"			
	9.6	48	0.0200	0.08		Sheet Flow,			
	1.0	105	0 0070	0.05		Grass: Dense n= 0.240 P2= 2.20"			
	1.0	165	0.0270	2.65		Shallow Concentrated Flow,			
	1.3	210	0.0170	2.65		Unpaved Kv= 16.1 fps Shallow Concentrated Flow,			
	1.5	210	0.0170	2.05		Paved $Kv=20.3$ fps			
	3.4	465	0.0200	2.28		Shallow Concentrated Flow,			
	5.4	400	0.0200	2.20		Unpaved Kv= 16.1 fps			
	0.2	30	0.0200	2.87		Shallow Concentrated Flow,			
	0.2	00	0.0200	2.07		Paved $Kv = 20.3 \text{ fps}$			
	2.3	287	0.0170	2.10		Shallow Concentrated Flow,			
	2.0	201	0.0.10	20		Unpaved Kv= 16.1 fps			
	20.1	1 207	Total						

28.1 1,307 Total

Existing Conditions

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing ConditionsType II 24-hr1-yr Rainfall=1.84"Printed9/29/2022Page 6

Summary for Subcatchment 3A: DA #3A

Runoff = 14.57 cfs @ 12.38 hrs, Volume= 1.750 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.84"

Area	(ac) C	N Des	cription					
0.	000	74 >75	% Grass co	over, Good	, HSG C			
18.	459 8			over, Good	, HSG D			
			ed parking					
-			ed parking					
			el surface					
0.000 96 Gravel surface, HSG D								
-	28.772 86 Weighted Average							
-	459		6% Pervio					
10.	313	35.8	4% Imper	ious Area/				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
31.4	150	0.0100	0.08		Sheet Flow,			
					Grass: Dense n= 0.240 P2= 2.20"			
3.9	380	0.0100	1.61		Shallow Concentrated Flow,			
					Unpaved Kv= 16.1 fps			
1.2	146	0.0100	2.03		Shallow Concentrated Flow,			
0.0			4 50		Paved Kv= 20.3 fps			
2.9	774		4.50		Direct Entry,			
39.4	1,450	Total						

Existing Conditions

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 3B: DA #3B

Runoff = 10.44 cfs @ 12.33 hrs, Volume= 1.188 af, Depth= 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 1-yr Rainfall=1.84"

Area	(ac) (CN D	escription		
0.	000	74 >75% Grass cover, Good, HSG C			
14.	241	80 >	75% Grass	s cover, Good	I, HSG D
0.	000			ng, HSG C	
	496			ng, HSG D	
	000			ace, HSG C	
	902			ace, HSG D	
1.	889	77 V	/oods, Goo	od, HSG D	
22.	528	84 V	eighted A	verage	
	032	9	3.36% Per	vious Area	
1.	496	6	64% Impe	rvious Area	
т.	المربع مرال	01-1	· · · / · · · · ·	t	Description
Tc	Length				Description
(min)	(feet)		/ \	/ /	
26.7	150	0.01	50 0.0)9	Sheet Flow,
		0.04		_	Grass: Dense n= 0.240 P2= 2.20"
6.9	820	0.01	50 1.9	97	Shallow Concentrated Flow,
4 -	0.4 5			-0	Unpaved Kv= 16.1 fps
1.5	315		3.5	0	Direct Entry, Swale Flow
35.1	1,285	Tota			

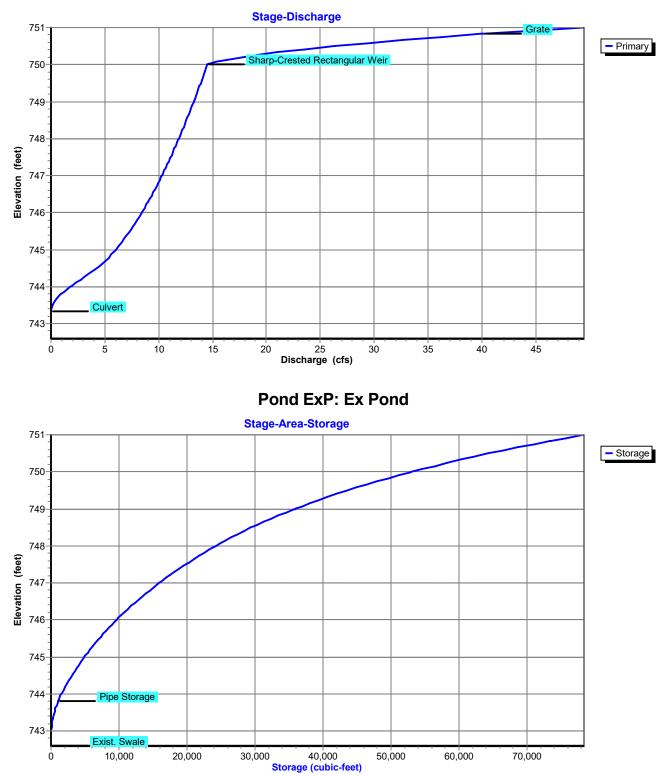
Summary for Pond ExP: Ex Pond

Inflow Area =	17.147 ac,	9.01% Impervious, Inflo	w Depth = 1.09" for 1-yr event
Inflow =	31.15 cfs @	11.98 hrs, Volume=	1.564 af
Outflow =	10.79 cfs @	12.12 hrs, Volume=	1.558 af, Atten= 65%, Lag= 8.2 min
Primary =	10.79 cfs @	12.12 hrs, Volume=	1.558 af

Routing by Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 747.30' @ 12.12 hrs Surf.Area= 7,827 sf Storage= 18,166 cf

Plug-Flow detention time= 21.6 min calculated for 1.557 af (100% of inflow) Center-of-Mass det. time= 19.3 min (836.7 - 817.4)

Volume	Inve	ert Avail.Sto	rage Stora	ge Description		
#1	742.6	0' 77,68	38 cf Exist	Swale (Prismatic) Listed below (Recalc)	
#2	743.8	0' ⁶⁰		Round Pipe Stor		
				.0' S= 0.0260 '/'		
		78,28	39 cf Total	Available Storage		
				•		
Elevatio	on	Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
742.6	60	1	0	0		
743.0	00	245	49	49		
744.(00	2,744	1,495	1,544		
745.0		3,915	3,330	4,873		
746.0		5,216	4,566	9,439		
747.0		6,916	6,066	15,505		
748.0		9,428	8,172	23,677		
749.0		13,835	11,632	35,308		
750.0		20,462	17,149	52,457		
751.0	00	30,000	25,231	77,688		
Device	Douting	Invert	Outlet Devi			
-	Routing					
#1	Primary	742.29'	30.0" Rou			
					e headwall, Ke= 0.500	000
					742.09' S= 0.0019 '/' Cc= (J.900
#2	Device 1	743.34'	,	Flow Area= 4.91 s		
#2	Device I	743.34			onforming to fill, Ke= 0.500	
					742.98' S= 0.0144 '/' Cc= (
				Flow Area= 1.23 s		5.900
#3	Device 1	750.84'	,	0" Horiz. Grate (
#3	Device I	750.04	-	weir flow at low heat		
#4	Primary	750.00'			ctangular Weir 2 End Contr	action(s)
<i></i>	. minary	100.00	. or or or of the second secon			


Primary OutFlow Max=10.75 cfs @ 12.12 hrs HW=747.28' (Free Discharge)

-1=Culvert (Passes 10.75 cfs of 42.32 cfs potential flow)

2=Culvert (Inlet Controls 10.75 cfs @ 8.76 fps)

-3=Grate (Controls 0.00 cfs)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond ExP: Ex Pond

Existing ConditionsType II 24-Prepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Type II 24-hr Existing Conditions *1-yr Rainfall=1.84"* Printed 9/29/2022 Page 10

Stage-Discharge for Pond ExP: Ex Pond

Elevation	Primary	Elevation	Primary
Elevation (feet) 742.60 742.70 742.80 742.90 743.00 743.10 743.20 743.20 743.30 743.60 743.60 743.70 743.80 743.90 744.00 744.00 744.00 744.20 744.30 744.40 744.50 744.60 744.50 745.10 745.00 745.10 745.20 745.30 745.40 745.50 745.60 745.70 745.80 745.60 745.70 745.80 745.60 745.70 745.80 745.60 745.70 745.80 745.60 745.70 745.60 745.70 746.40 746.70 746.30 746.70 746.30 746.70	Primary (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Elevation (feet) 747.70 747.80 747.90 748.00 748.00 748.10 748.20 748.30 748.60 748.70 748.60 748.70 748.80 749.00 749.10 749.20 749.30 749.40 749.20 749.30 749.40 749.50 749.60 749.70 749.80 749.90 750.00 750.10 750.20 750.30 750.40 750.50 750.60 750.70 750.80 750.90 751.00	Primary (cfs) 11.42 11.57 11.72 11.87 12.02 12.16 12.30 12.44 12.58 12.72 12.86 12.99 13.13 13.26 13.39 13.52 13.65 13.78 13.90 14.03 14.15 14.27 14.40 14.52 15.67 17.67 20.21 23.20 26.55 30.24 34.22 38.47 43.36 49.39

Existing ConditionsType IPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing Conditions Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 11

Stage-Area-Storage for Pond ExP: Ex Pond

	0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
742.60 742.70	0 3	747.70 747.80	21,499 22,390
742.70	12	747.90	23,305
742.80	28	748.00	23,303 24,244
743.00	49	748.10	25,216
743.10	86	748.20	26,232
743.20	148	748.30	27,290
743.30	235	748.40	28,391
743.40	347	748.50	29,536
743.50	484	748.60	30,724
743.60	646	748.70	31,955
743.70	833	748.80	33,229
743.80	1,045	748.90	34,547
743.90	1,282	749.00	35,909
744.00	1,544	749.10	37,326
744.10	1,826	749.20	38,809
744.20	2,119	749.30	40,358
744.30	2,426	749.40	41,973
744.40	2,744	749.50	43,655
744.50	3,076	749.60	45,403
744.60 744.70	3,420 3,777	749.70 749.80	47,217 49,098
744.80	4,146	749.90	51,044
744.90	4,529	750.00	53,058
745.00	4,924	750.10	55,151
745.10	5,333	750.20	57,341
745.20	5,756	750.30	59,625
745.30	6,193	750.40	62,005
745.40	6,644	750.50	64,481
745.50	7,109	750.60	67,052
745.60	7,589	750.70	69,718
745.70	8,083	750.80	72,479
745.80	8,590	750.90	75,336
745.90	9,112	751.00	78,289
746.00	9,648		
746.10 746.20	10,200 10,769		
746.30	11,356		
746.40	11,960		
746.50	12,581		
746.60	13,219		
746.70	13,874		
746.80	14,545		
746.90	15,232		
747.00	15,935		
747.10	16,658		
747.20	17,405		
747.30	18,176		
747.40	18,971		
747.50	19,790		
747.60	20,633		
		I	

Summary for Link 2AR: 2A Reach

Inflow Area =		73.409 ac, 56.57% Impervious, Inflow Depth = 1.33" for 1-yr event
Inflow	=	101.79 cfs @ 12.14 hrs, Volume= 8.142 af
Primary	=	100.78 cfs @ 12.25 hrs, Volume= 8.142 af, Atten= 1%, Lag= 6.9 min

Primary outflow = Inflow delayed by 6.9 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BR: 2B Reach

Inflow Are	a =	1.841 ac, 12.33% Impervious, Inflow Depth = 1.42" for 1-yr event
Inflow	=	2.31 cfs @ 12.21 hrs, Volume= 0.218 af
Primary	=	2.29 cfs @ 12.35 hrs, Volume= 0.218 af, Atten= 1%, Lag= 8.1 min

Primary outflow = Inflow delayed by 8.0 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AR: 3A Reach

Inflow Area =		28.772 ac, 35.84% Impervious, Inflow Depth = 0.73" for 1-yr event
Inflow	=	14.57 cfs @ 12.38 hrs, Volume= 1.750 af
Primary	=	14.53 cfs @ 12.44 hrs, Volume= 1.750 af, Atten= 0%, Lag= 3.7 min

Primary outflow = Inflow delayed by 3.7 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BR: 3B Reach

Inflow Area =	22.528 ac,	6.64% Impervious, I	nflow Depth = 0.63"	for 1-yr event
Inflow =	10.44 cfs @	12.33 hrs, Volume=	1.188 af	
Primary =	10.42 cfs @	12.47 hrs, Volume=	1.188 af, Atte	en= 0%, Lag= 8.6 min

Primary outflow = Inflow delayed by 8.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-1: DP #1 - Rush Crk Trib.

Inflow Area =		69.450 ac, 17.61% Impervious, Inflow Depth = 0.82" for 1-yr event
Inflow	=	35.65 cfs @ 12.37 hrs, Volume= 4.739 af
Primary	=	35.65 cfs @ 12.37 hrs, Volume= 4.739 af, Atten= 0%, Lag= 0.0 min

Summary for Link DP-2: DP #2 - Smokes Crk

Inflow Area =		75.250 ac, 55.48% Impervious, Inflow Depth = 1.33" for 1-yr event
Inflow	=	102.83 cfs @ 12.26 hrs, Volume= 8.360 af
Primary	=	102.83 cfs @ 12.26 hrs, Volume= 8.360 af, Atten= 0%, Lag= 0.0 min

Summary for Link DP-3: DP #3 - Rush Crk

Inflow Area =		51.300 ac, 23.02% Impervious, Inflow Depth = 0.69" for 1-yr event
Inflow	=	24.90 cfs @ 12.46 hrs, Volume= 2.938 af
Primary	=	24.90 cfs @ 12.46 hrs, Volume= 2.938 af, Atten= 0%, Lag= 0.0 min

Summary for Link ET: Existing Conditions Total Offsite

 Inflow Area =
 196.000 ac, 33.57% Impervious, Inflow Depth =
 0.98" for 1-yr event

 Inflow =
 154.04 cfs @
 12.28 hrs, Volume=
 16.037 af

 Primary =
 154.04 cfs @
 12.28 hrs, Volume=
 16.037 af, Atten= 0%, Lag= 0.0 min

Summary for Subcatchment 1A-I: DA #1A-I

Runoff 66.30 cfs @ 12.37 hrs, Volume= 7.809 af, Depth= 1.79" =

Area	(ac) (CN Des	cription		
0.	.053	74 >75% Grass cover, Good		over, Good	, HSG C
32.	764	80 >75	% Grass c	over, Good	, HSG D
0.	.000	98 Pav	ed parking	, HSG C	
10.	.684	98 Pav	ed parking	, HSG D	
0.			vel surface	,	
			vel surface	,	
1.	.631	77 Woo	ods, Good,	HSG D	
52.	.303	86 Wei	ghted Ave	rage	
	.619		7% Pervio		
10.	.684	20.4	3% Imperv	∕ious Area	
_		_ .			
Tc	Length	•	Velocity	Capacity	Description
(min)	(feet)		(ft/sec)	(cfs)	
30.2	150	0.0110	0.08		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.20"
1.4	139	0.0110	1.69		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
2.2	513	0.0060	3.90	102.86	Trap/Vee/Rect Channel Flow,
					Bot.W=25.00' D=0.80' Z= 10.0 '/' Top.W=41.00'
0.7	4 700		4 50		n= 0.022 Earth, clean & straight
6.7	1,798		4.50		Direct Entry, Pipe Flow
40.5	2,600	Total			

Summary for Subcatchment 1A-II: DA #1A-II

Runoff = 63.18 cfs @ 11.98 hrs, Volume= 3.291 af, Depth= 2.30"

Area	(ac) (CN Des	cription		
0.	.000	74 >75% Grass cover, Good, HSG C			
4.	.803	80 >75	% Grass c	over, Good	, HSG D
0.	.000		ed parking	,	
	.545		ed parking		
	.000		vel surface	,	
10.	.799	96 Gra	vel surface	, HSG D	
	.147		ghted Aver	0	
	.602		9% Pervio		
1.	.545	9.01	% Impervi	ous Area	
Та	Longth	Clana	Valaaity	Consoitu	Description
Tc (min)	Length (feet)		Velocity (ft/sec)	Capacity (cfs)	Description
(min)				(015)	
2.7	150	0.0100	0.94		Sheet Flow,
0.3	25	0.0100	1.61		Smooth surfaces n= 0.011 P2= 2.20"
0.5	20	0.0100	1.01		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
3.9	930	0.0100	3.93	33.44	Trap/Vee/Rect Channel Flow,
0.9	300	0.0100	5.55	55.44	Bot.W=15.00' D=0.50' Z= 4.0 '/' Top.W=19.00'
					n = 0.022 Earth, clean & straight
0.3	90		4.50		Direct Entry, Pipe Flow
-					,,,
7.2	1,195	Total			

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 2A: DA #2A

Runoff = 192.53 cfs @ 12.14 hrs, Volume= 15.881 af, Depth= 2.60"

Area ((ac) C	N Dese	cription			
1.9	970 7	74 >75% Grass cover, Good, HSG C			, HSG C	
4.	741 8	80 >75 ^c	% Grass co	over, Good,	, HSG D	
15.	520 9	8 Pave	ed parking	, HSG C		
26.	004 9	8 Pave	ed parking	, HSG D		
4.9	966 9	6 Grav	/el surface	, HSG C		
19.	613 9	6 Grav	/el surface	, HSG D		
0.	595 7	'7 Woo	ods, Good,	HSG D		
73.4	409 9	5 Weig	ghted Aver	rage		
31.	885	43.4	3% Pervio	us Area		
41.	524	56.5	7% Imper	/ious Area		
Tc	Length	Slope	Velocity		Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
1.9	98	0.0100	0.86		Sheet Flow,	
					Smooth surfaces n= 0.011 P2= 2.20"	
13.7	65	0.0150	0.08		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.20"	
0.7	80	0.0150	1.97		Shallow Concentrated Flow,	
					Unpaved Kv= 16.1 fps	
0.8	88	0.0090	1.93		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
2.8	360	0.0110	2.13		Shallow Concentrated Flow, Gravel	
					Paved Kv= 20.3 fps	
1.7	446		4.50		Direct Entry, Pipe Flow	
21.6	1,137	Total				

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 2B: DA #2B

Runoff = 4.26 cfs @ 12.21 hrs, Volume= 0.414 af, Depth= 2.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=3.15"

Area	(ac) C	N Dese	cription			
0	.000 7	′4 >75°	>75% Grass cover, Good, HSG C			
0	.039 8	30 >75 [°]	% Grass co	over, Good	, HSG D	
	0.000 98 Paved parking, HSG C					
			ed parking			
			/el surface			
			el surface/	·		
0	.000 7	'7 Woo	ods, Good,	HSG D		
1	.841 9		ghted Aver			
1	.614	87.6	7% Pervio	us Area		
0	.227	12.3	3% Imperv	/ious Area		
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9.4	47	0.0200	0.08		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.20"	
0.9	55	0.0200	1.01		Sheet Flow,	
					Smooth surfaces n= 0.011 P2= 2.20"	
9.6	48	0.0200	0.08		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.20"	
1.0	165	0.0270	2.65		Shallow Concentrated Flow,	
					Unpaved Kv= 16.1 fps	
1.3	210	0.0170	2.65		Shallow Concentrated Flow,	
	405	0 0000	0.00		Paved Kv= 20.3 fps	
3.4	465	0.0200	2.28		Shallow Concentrated Flow,	
0.0	00	0 0000	0.07		Unpaved Kv= 16.1 fps	
0.2	30	0.0200	2.87		Shallow Concentrated Flow,	
0.0	207	0.0170	0.40		Paved Kv= 20.3 fps	
2.3	287	0.0170	2.10		Shallow Concentrated Flow,	
28.1	1 307	Total			Unpaved Kv= 16.1 fps	

28.1 1,307 Total

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 3A: DA #3A

Runoff = 37.13 cfs @ 12.36 hrs, Volume= 4.296 af, Depth= 1.79"

Area	(ac) C	N Des	cription		
0.	000	74 >75	% Grass co	over, Good	, HSG C
18.	459 8			over, Good	, HSG D
			ed parking		
-			ed parking		
			el surface	,	
-			el surface	,	
-			ghted Aver		
-	459		6% Pervio		
10.	313	35.8	4% Imper	ious Area/	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
31.4	150	0.0100	0.08		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.20"
3.9	380	0.0100	1.61		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
1.2	146	0.0100	2.03		Shallow Concentrated Flow,
0.0			4 50		Paved Kv= 20.3 fps
2.9	774		4.50		Direct Entry,
39.4	1,450	Total			

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 3B: DA #3B

Runoff = 28.71 cfs @ 12.31 hrs, Volume= 3.080 af, Depth= 1.64"

Area	(ac) C	N Des	cription				
0.	000	74 >75	>75% Grass cover, Good, HSG C				
14.	241	80 >75	% Grass c	over, Good	, HSG D		
0.	000		ed parking	,			
1.	496		ed parking				
		96 Gra	vel surface	e, HSG C			
			vel surface	,			
1.	889	77 Wo	ods, Good,	HSG D			
22.	528	34 We	ghted Ave	rage			
	032	93.3	36% Pervio	us Area			
1.	496	6.64	1% Impervi	ous Area			
-				0			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
26.7	150	0.0150	0.09		Sheet Flow,		
					Grass: Dense n= 0.240 P2= 2.20"		
6.9	820	0.0150	1.97		Shallow Concentrated Flow,		
	<u> </u>				Unpaved Kv= 16.1 fps		
1.5	315		3.50		Direct Entry, Swale Flow		
35.1	1,285	Total					

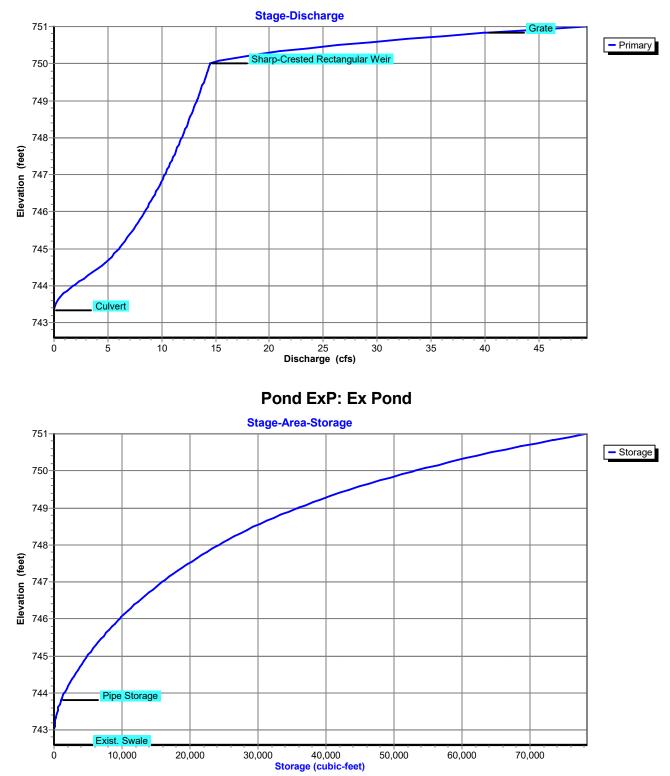
Summary for Pond ExP: Ex Pond

Inflow Area =	17.147 ac,	9.01% Impervious, Inflow	Depth = 2.30" for 10-yr event
Inflow =	63.18 cfs @	11.98 hrs, Volume=	3.291 af
Outflow =	14.05 cfs @	12.17 hrs, Volume=	3.285 af, Atten= 78%, Lag= 11.1 min
Primary =	14.05 cfs @	12.17 hrs, Volume=	3.285 af

Routing by Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 749.62' @ 12.17 hrs Surf.Area= 17,936 sf Storage= 45,739 cf

Plug-Flow detention time= 28.9 min calculated for 3.283 af (100% of inflow) Center-of-Mass det. time= 27.8 min (824.1 - 796.3)

Volume	Inve	ert Avail.Sto	rage Stora	ge Description	
#1	742.6	0' 77,68	38 cf Exist	. Swale (Prismatic) Listed below (Recalc)
#2	743.8			Round Pipe Stor	
				.0' S= 0.0260 '/'	
		78,28	39 cf Total	Available Storage	
				0	
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
742.0	60	1	0	0	
743.0	00	245	49	49	
744.(00	2,744	1,495	1,544	
745.0	00	3,915	3,330	4,873	
746.0		5,216	4,566	9,439	
747.0		6,916	6,066	15,505	
748.0		9,428	8,172	23,677	
749.0		13,835	11,632	35,308	
750.0		20,462	17,149	52,457	
751.0	00	30,000	25,231	77,688	
Dovice	Pouting	Invort	Outlet Devi	iaaa	
Device	Routing				
#1	Primary	742.29'		nd Culvert	
					e headwall, Ke= 0.500
					742.09' S= 0.0019 '/' Cc= 0.900
#2	Device 1	743.34'	,	Flow Area= 4.91 st nd Culvert	
#2	Device I	743.34			onforming to fill, Ke= 0.500
					742.98' S= 0.0144 '/' Cc= 0.900
				Flow Area= 1.23 st	
#3	Device 1	750.84'	,	0" Horiz. Grate (
#3	Device I	700.04	-	weir flow at low hea	
#4	Primary	750.00'			ctangular Weir 2 End Contraction(s)
	y				


Primary OutFlow Max=14.04 cfs @ 12.17 hrs HW=749.61' (Free Discharge)

_1=Culvert (Passes 14.04 cfs of 57.85 cfs potential flow)

2=Culvert (Inlet Controls 14.04 cfs @ 11.44 fps)

-3=Grate (Controls 0.00 cfs)

-4=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond ExP: Ex Pond

Existing ConditionsType IIPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing Conditions Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 28

Stage-Discharge for Pond ExP: Ex Pond

Elevation	Primary	Elevation	Primary
(feet) 742.60	<u>(cfs)</u> 0.00	(feet) 747.70	<u>(cfs)</u> 11.42
742.70	0.00	747.80	11.57
742.80 742.90	0.00 0.00	747.90 748.00	11.72 11.87
743.00	0.00	748.10	12.02
743.10 743.20	0.00 0.00	748.20 748.30	12.16 12.30
743.30	0.00	748.40	12.44
743.40 743.50	0.02 0.12	748.50 748.60	12.58 12.72
743.60	0.32	748.70	12.86
743.70 743.80	0.60 0.95	748.80 748.90	12.99 13.13
743.90 744.00	1.36 1.81	749.00 749.10	13.26 13.39
744.00	2.27	749.10	13.52
744.20 744.30	2.76 3.26	749.30 749.40	13.65 13.78
744.40	3.77	749.50	13.90
744.50 744.60	4.28 4.71	749.60 749.70	14.03 14.15
744.70	5.07	749.80	14.27
744.80 744.90	5.40 5.71	749.90 750.00	14.40 14.52
745.00	6.01	750.10	15.67
745.10 745.20	6.30 6.57	750.20 750.30	17.67 20.21
745.30	6.83	750.40	23.20
745.40 745.50	7.08 7.32	750.50 750.60	26.55 30.24
745.60	7.56 7.78	750.70 750.80	34.22
745.70 745.80	8.00	750.80	38.47 43.36
745.90 746.00	8.22 8.43	751.00	49.39
746.10	8.63		
746.20 746.30	8.83 9.03		
746.40	9.22		
746.50 746.60	9.41 9.59		
746.70	9.77		
746.80 746.90	9.95 10.12		
747.00	10.29		
747.10 747.20	10.46 10.63		
747.30 747.40	10.79 10.95		
747.50	11.11		
747.60	11.27		

Existing ConditionsType IIPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing Conditions Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 29

Stage-Area-Storage for Pond ExP: Ex Pond

-	<u>.</u>		<u>.</u>
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
742.60	0 3	747.70	21,499
742.70 742.80	12	747.80 747.90	22,390 23,305
742.80	28	747.90	23,305 24,244
743.00	49	748.00	25,216
743.10	86	748.20	26,232
743.20	148	748.30	27,290
743.30	235	748.40	28,391
743.40	347	748.50	29,536
743.50	484	748.60	30,724
743.60	646	748.70	31,955
743.70	833	748.80	33,229
743.80	1,045	748.90	34,547
743.90	1,282	749.00	35,909
744.00	1,544	749.10	37,326
744.10	1,826	749.20	38,809
744.20	2,119	749.30	40,358
744.30	2,426	749.40	41,973
744.40	2,744	749.50	43,655
744.50	3,076	749.60	45,403
744.60	3,420	749.70	47,217
744.70 744.80	3,777	749.80	49,098 51,044
744.80	4,146 4,529	749.90 750.00	53,058
745.00	4,924	750.00	55,151
745.10	5,333	750.20	57,341
745.20	5,756	750.30	59,625
745.30	6,193	750.40	62,005
745.40	6,644	750.50	64,481
745.50	7,109	750.60	67,052
745.60	7,589	750.70	69,718
745.70	8,083	750.80	72,479
745.80	8,590	750.90	75,336
745.90	9,112	751.00	78,289
746.00	9,648		
746.10	10,200		
746.20	10,769		
746.30	11,356		
746.40	11,960		
746.50 746.60	12,581 13,219		
746.70	13,874		
746.80	14,545		
746.90	15,232		
747.00	15,935		
747.10	16,658		
747.20	17,405		
747.30	18,176		
747.40	18,971		
747.50	19,790		
747.60	20,633		
		l	

Summary for Link 2AR: 2A Reach

Inflow Are	ea =	73.409 ac, 56.57% Impervious, Inflow Depth = 2.60" for 10-yr event
Inflow	=	192.53 cfs @ 12.14 hrs, Volume= 15.881 af
Primary	=	190.66 cfs @ 12.25 hrs, Volume= 15.881 af, Atten= 1%, Lag= 6.9 min

Primary outflow = Inflow delayed by 6.9 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BR: 2B Reach

Inflow Are	a =	1.841 ac, 12.33% Impervious, Inflow Depth = 2.70" for 10-yr event
Inflow	=	4.26 cfs @ 12.21 hrs, Volume= 0.414 af
Primary	=	4.23 cfs @ 12.34 hrs, Volume= 0.414 af, Atten= 1%, Lag= 8.1 min

Primary outflow = Inflow delayed by 8.0 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AR: 3A Reach

Inflow Are	a =	28.772 ac, 35.84% Impervious, Inflow Depth = 1.79" for 10-yr event
Inflow	=	37.13 cfs @ 12.36 hrs, Volume= 4.296 af
Primary	=	37.04 cfs @ 12.42 hrs, Volume= 4.296 af, Atten= 0%, Lag= 3.7 min

Primary outflow = Inflow delayed by 3.7 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BR: 3B Reach

Inflow Are	a =	22.528 ac,	6.64% Impervious,	Inflow Depth =	1.64"	for 10-yr event
Inflow	=	28.71 cfs @	12.31 hrs, Volume	= 3.080 a	af	
Primary	=	28.64 cfs @	12.45 hrs, Volume	= 3.080 a	af, Atte	en= 0%, Lag= 8.6 min

Primary outflow = Inflow delayed by 8.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-1: DP #1 - Rush Crk Trib.

Inflow Are	a =	69.450 ac, 17.61% Impervious, Inflow Depth = 1.92" for 10-yr event
Inflow	=	80.09 cfs @ 12.37 hrs, Volume= 11.094 af
Primary	=	80.09 cfs @ 12.37 hrs, Volume= 11.094 af, Atten= 0%, Lag= 0.0 min

Summary for Link DP-2: DP #2 - Smokes Crk

Inflow Are	a =	75.250 ac, 55.48% Impervious, Inflow Depth = 2.60" for 10-yr event
Inflow	=	194.44 cfs @ 12.25 hrs, Volume= 16.295 af
Primary	=	194.44 cfs @ 12.25 hrs, Volume= 16.295 af, Atten= 0%, Lag= 0.0 min

Summary for Link DP-3: DP #3 - Rush Crk

Inflow Are	a =	51.300 ac, 23.02% Impervious, Inflow Depth = 1.73" for 10-yr event
Inflow	=	65.53 cfs @ 12.44 hrs, Volume= 7.376 af
Primary	=	65.53 cfs @ 12.44 hrs, Volume= 7.376 af, Atten= 0%, Lag= 0.0 min

Summary for Link ET: Existing Conditions Total Offsite

 Inflow Area =
 196.000 ac, 33.57% Impervious, Inflow Depth =
 2.13" for 10-yr event

 Inflow =
 319.89 cfs @
 12.29 hrs, Volume=
 34.765 af

 Primary =
 319.89 cfs @
 12.29 hrs, Volume=
 34.765 af, Atten= 0%, Lag= 0.0 min

Summary for Subcatchment 1A-I: DA #1A-I

Runoff = 90.00 cfs @ 12.37 hrs, Volume= 10.586 af, Depth= 2.43"

Area	(ac)	CN I	Deso	cription		
0.	.053	74 🔅	>759	% Grass co	over, Good	, HSG C
32.	764	80 >	>759	% Grass co	over, Good	, HSG D
0.	.000	98 I	Pave	ed parking	, HSG C	
10.	.684	98 I	Pave	ed parking	, HSG D	
0.	.000		Grav	el surface	, HSG C	
	.171			el surface	,	
1.	.631	77 \	Noc	ds, Good,	HSG D	
52.	.303		•	ghted Aver	0	
	.619			7% Pervio		
10.	.684	2	20.4	3% Imper	ious Area/	
_						
Tc	Length		pe	Velocity	Capacity	Description
(min)	(feet		:/ft)	(ft/sec)	(cfs)	
30.2	150	0.01	10	0.08		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.20"
1.4	139	0.01	10	1.69		Shallow Concentrated Flow,
					400.00	Unpaved Kv= 16.1 fps
2.2	513	0.00	60	3.90	102.86	Trap/Vee/Rect Channel Flow,
						Bot.W=25.00' D=0.80' Z= 10.0 '/' Top.W=41.00'
0.7	4 700			4 50		n= 0.022 Earth, clean & straight
6.7	1,798			4.50		Direct Entry, Pipe Flow
40.5	2,600) Tota	al			

Summary for Subcatchment 1A-II: DA #1A-II

Runoff = 80.77 cfs @ 11.98 hrs, Volume= 4.276 af, Depth= 2.99"

Area	(ac) (CN Des	cription		
0.	.000	74 >75	% Grass c	over, Good	, HSG C
4.	.803			over, Good	, HSG D
0.			ed parking		
			ed parking		
			/el surface	,	
-			/el surface	,	
			ghted Ave	0	
	.602		9% Pervio		
1.	.545	9.01	% Impervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)		(ft/sec)	(cfs)	
2.7	150	0.0100	0.94		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.20"
0.3	25	0.0100	1.61		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
3.9	930	0.0100	3.93	33.44	Trap/Vee/Rect Channel Flow,
					Bot.W=15.00' D=0.50' Z= 4.0 '/' Top.W=19.00'
0.0	00		4 50		n= 0.022 Earth, clean & straight
0.3	90		4.50		Direct Entry, Pipe Flow
7.2	1,195	Total			

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 2A: DA #2A

Runoff = 241.86 cfs @ 12.14 hrs, Volume= 20.206 af, Depth= 3.30"

Area	(ac) C	N Dese	cription		
1.	970 7	74 >759	% Grass co	over, Good	, HSG C
4.	741 8	30 >759	% Grass co	over, Good	, HSG D
15.	520 9	98 Pave	ed parking	, HSG C	
26.	004 9	98 Pave	ed parking	, HSG D	
4.	966 9	96 Grav	/el surface	, HSG C	
19.	613 9	96 Grav	/el surface	, HSG D	
0.	595 7	77 Woo	ods, Good,	HSG D	
73.	409 9	95 Weig	ghted Aver	rage	
31.	885	43.4	3% Pervio	us Area	
41.	524	56.5	7% Imperv	/ious Area	
Тс	Length	Slope	•	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.9	98	0.0100	0.86		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.20"
13.7	65	0.0150	0.08		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.20"
0.7	80	0.0150	1.97		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
0.8	88	0.0090	1.93		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
2.8	360	0.0110	2.13		Shallow Concentrated Flow, Gravel
			4 - 0		Paved Kv= 20.3 fps
1.7	446		4.50		Direct Entry, Pipe Flow
21.6	1,137	Total			

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 2B: DA #2B

Runoff = 5.32 cfs @ 12.21 hrs, Volume= 0.523 af, Depth= 3.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=3.87"

Area	(ac) C	N Dese	cription							
0.	000 7	'4 >75 [°]	% Grass co	over, Good	, HSG C					
0.	039 8	30 >75 [°]	% Grass co	over, Good	, HSG D					
				,						
-	-									
				,						
1.841 96 Weighted Average										
	-									
0.	227	12.3	3% Imperv	ious Area/						
	0		,		Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
9.4	47	0.0200	0.08		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 2.20"					
0.9	55	0.0200	1.01		Sheet Flow,					
					Smooth surfaces n= 0.011 P2= 2.20"					
9.6	48	0.0200	0.08		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 2.20"					
1.0	165	0.0270	2.65		Shallow Concentrated Flow,					
4.0	040	0.0470	0.05		Unpaved Kv= 16.1 fps					
1.3	210	0.0170	2.65		Shallow Concentrated Flow,					
0.4	405	0 0000	0.00		Paved Kv= 20.3 fps					
3.4	465	0.0200	2.28		Shallow Concentrated Flow,					
0.0	20	0 0000	0.07		Unpaved Kv= 16.1 fps					
0.2	30	0.0200	2.87		Shallow Concentrated Flow,					
22	207	0.0170	2 10		Paved Kv= 20.3 fps Shallow Concentrated Flow,					
2.3	201	0.0170	2.10		Unpaved Kv= 16.1 fps					
00.4	1 307	Total			011paveu 1(v-10.11ps					
	0. 0. 0. 1. 0. 1. 1. 1.	0.000 7 0.039 8 0.000 9 0.227 9 0.000 9 1.575 9 0.000 7 1.841 9 1.614 0.227 Tc Length (min) (feet) 9.4 47 0.9 55 9.6 48 1.0 165 1.3 210 3.4 465 0.2 30 2.3 287	0.000 74 >750 0.039 80 >750 0.000 98 Pave 0.227 98 Pave 0.000 96 Grav 1.575 96 Grav 1.575 96 Grav 1.575 96 Grav 1.614 87.6 0.227 12.3 Tc Length Slope (min) (feet) (ft/ft) 9.4 47 0.0200 0.9 55 0.0200 9.6 48 0.0200 1.3 210 0.0170 3.4 465 0.0200 0.2 30 0.0200 2.3 287 0.0170	0.000 74 >75% Grass cd 0.039 80 >75% Grass cd 0.000 98 Paved parking 0.227 98 Paved parking 0.000 96 Gravel surface 1.575 96 Gravel surface 0.000 77 Woods, Good, 1.841 96 Weighted Aver 1.614 87.67% Pervio 0.227 12.33% Impervio 0.9 55 0.0200 1.01 9.6 48 0.0200 0.08 1.0 165 0.0270 2.65 1.3 210 0.0170 2.65 3.4 465 0.0200 2.28 0.2 30 0.0200 2.87 2.3 287 0.0170 2.10	0.000 74 >75% Grass cover, Good 0.039 80 >75% Grass cover, Good 0.000 98 Paved parking, HSG C 0.227 98 Paved parking, HSG D 0.000 96 Gravel surface, HSG C 0.227 98 Paved parking, HSG D 0.000 96 Gravel surface, HSG C 1.575 96 Gravel surface, HSG D 0.000 77 Woods, Good, HSG D 1.841 96 Weighted Average 1.614 87.67% Pervious Area 0.227 12.33% Impervious Area 0.227 12.33% Impervious Area 0.227 1.0200 0.08 0.9 55 0.0200 1.01 9.6 48 0.0200 0.08 1.0 165 0.0270 2.65 1.3 210 0.0170 2.65 3.4 465 0.0200 2.87 2.3 287 0.0170 2.10					

28.1 1,307 Total

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 3A: DA #3A

Runoff = 50.40 cfs @ 12.36 hrs, Volume= 5.824 af, Depth= 2.43"

Area	(ac) (CN Des	cription		
0	.000	74 >75	% Grass co	over, Good	, HSG C
18	.459	80 >759	% Grass co	over, Good	, HSG D
-			ed parking		
			ed parking	,	
			el surface	,	
0	.000	96 Grav	el surface	, HSG D	
-			ghted Aver	•	
-	.459		6% Pervio		
10	.313	35.8	4% Imper	ious Area/	
То	Longth	Slope	Volocity	Conosity	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
31.4	150	· · · /	0.08	(013)	Sheet Flow,
31.4	150	0.0100	0.00		Grass: Dense n= 0.240 P2= 2.20"
3.9	380	0.0100	1.61		Shallow Concentrated Flow,
0.0	000	0.0100	1.01		Unpaved Kv= 16.1 fps
1.2	146	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
2.9	774		4.50		Direct Entry,
39.4	1,450	Total			

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 3B: DA #3B

Runoff = 39.69 cfs @ 12.31 hrs, Volume= 4.237 af, Depth= 2.26"

Area	(ac) (CN [Desc	cription		
0.	000	74 >	>75%	6 Grass co	over, Good	, HSG C
14.	241				over, Good	, HSG D
0.	000			ed parking	,	
	496			ed parking		
0.	000	96 (Grav	el surface	, HSG C	
	902			el surface	,	
1.	889	77 \	Woo	ds, Good,	HSG D	
22.	528	84 \	Weig	ghted Aver	age	
	032			6% Pervio		
1.	496	6	6.64	% Impervi	ous Area	
T .	1	01			0	
Tc	Length		ope	Velocity	Capacity	Description
(min)	(feet)		<u>t/ft)</u>	(ft/sec)	(cfs)	
26.7	150	0.01	150	0.09		Sheet Flow,
0.0				4.07		Grass: Dense n= 0.240 P2= 2.20"
6.9	820	0.01	150	1.97		Shallow Concentrated Flow,
4 5	045			2 50		Unpaved Kv= 16.1 fps
1.5	315			3.50		Direct Entry, Swale Flow
35.1	1,285	Tota	al			

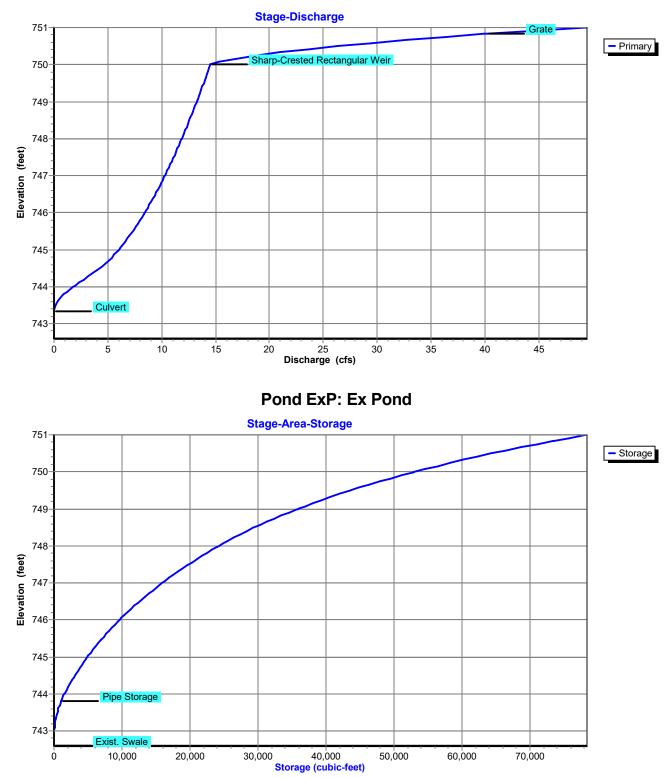
Summary for Pond ExP: Ex Pond

Inflow Area =	17.147 ac,	9.01% Impervious, Inflow	Depth = 2.99" for 25-yr event	
Inflow =	80.77 cfs @	11.98 hrs, Volume=	4.276 af	
Outflow =	21.50 cfs @	12.15 hrs, Volume=	4.269 af, Atten= 73%, Lag= 10.1 min	
Primary =	21.50 cfs @	12.15 hrs, Volume=	4.269 af	

Routing by Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 750.34' @ 12.15 hrs Surf.Area= 23,743 sf Storage= 60,660 cf

Plug-Flow detention time= 33.1 min calculated for 4.269 af (100% of inflow) Center-of-Mass det. time= 31.1 min (820.1 - 789.0)

Volume	Inve	rt Avail.Sto	rage Stora	ge Description	
#1	742.6	0' 77,68	38 cf Exist	. Swale (Prismatic	c) Listed below (Recalc)
#2	743.8	,		Round Pipe Stor	
				5.0' S= 0.0260 '/'	
		78,28	39 cf Total	Available Storage	
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
742.6	60	1	0	0	
743.0		245	49	49	
744.0	-	2,744	1,495	1,544	
745.0		3,915	3,330	4,873	
746.0		5,216	4,566	9,439	
747.0		6,916	6,066	15,505	
748.0		9,428	8,172	23,677	
749.0		13,835	11,632	35,308	
750.0		20,462	17,149	52,457	
751.0	00	30,000	25,231	77,688	
Device	Routing	Invert	Outlet Dev	ices	
#1	Primary	742.29'		nd Culvert	
π	i maiy	142.23			e headwall, Ke= 0.500
					742.09' S= 0.0019 '/' Cc= 0.900
				Flow Area= 4.91 s	
#2	Device 1	743.34'	,	nd Culvert	•
"-	Dovice	1 10.01			conforming to fill, Ke= 0.500
					742.98' S= 0.0144 '/' Cc= 0.900
				Flow Area= 1.23 s	
#3	Device 1	750.84'	,	0" Horiz. Grate	
	-		-	weir flow at low he	
#4	Primary	750.00'	10.0' long	Sharp-Crested Re	ectangular Weir 2 End Contraction(s)
			•	-	_ ()


Primary OutFlow Max=21.47 cfs @ 12.15 hrs HW=750.34' (Free Discharge)

-1=Culvert (Passes 14.92 cfs of 61.65 cfs potential flow)

2=Culvert (Inlet Controls 14.92 cfs @ 12.16 fps)

-3=Grate (Controls 0.00 cfs)

-4=Sharp-Crested Rectangular Weir (Weir Controls 6.55 cfs @ 1.92 fps)

Pond ExP: Ex Pond

Existing ConditionsType II 24-h.Prepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing Conditions Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 46

Stage-Discharge for Pond ExP: Ex Pond

Elevation	Primary	Elevation	Primary
(feet) 742.60	<u>(cfs)</u> 0.00	(feet) 747.70	<u>(cfs)</u> 11.42
742.70	0.00	747.80	11.57
742.80 742.90	0.00 0.00	747.90 748.00	11.72 11.87
743.00	0.00	748.10	12.02
743.10 743.20	0.00 0.00	748.20 748.30	12.16 12.30
743.30	0.00	748.40	12.44
743.40 743.50	0.02 0.12	748.50 748.60	12.58 12.72
743.60	0.32	748.70	12.86
743.70 743.80	0.60 0.95	748.80 748.90	12.99 13.13
743.90	1.36	749.00	13.26
744.00 744.10	1.81 2.27	749.10 749.20	13.39 13.52
744.20	2.76	749.30	13.65
744.30 744.40	3.26 3.77	749.40 749.50	13.78 13.90
744.50	4.28	749.60 749.70	14.03
744.60 744.70	4.71 5.07	749.70 749.80	14.15 14.27
744.80	5.40	749.90	14.40
744.90 745.00	5.71 6.01	750.00 750.10	14.52 15.67
745.10 745.20	6.30 6.57	750.20	17.67 20.21
745.20 745.30	6.83	750.30 750.40	20.21
745.40	7.08	750.50 750.60	26.55
745.50 745.60	7.32 7.56	750.60	30.24 34.22
745.70 745.80	7.78 8.00	750.80 750.90	38.47 43.36
745.80	8.00	751.00	4 3.30 49.39
746.00 746.10	8.43 8.63		
746.20	8.83		
746.30 746.40	9.03 9.22		
746.50	9.22 9.41		
746.60 746.70	9.59 9.77		
746.80	9.95		
746.90 747.00	10.12 10.29		
747.10	10.46		
747.20 747.30	10.63 10.79		
747.40	10.95		
747.50 747.60	11.11 11.27		

Existing ConditionsTypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing Conditions Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 47

Stage-Area-Storage for Pond ExP: Ex Pond

Flouration	Storage		Storage
Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
742.60	0	747.70	21,499
742.70	3	747.80	22,390
742.80	12	747.90	23,305
742.90	28	748.00	24,244
743.00	49	748.10	25,216
743.10	86	748.20	26,232
743.20	148	748.30	27,290
743.30	235	748.40	28,391
743.40	347	748.50	29,536
743.50	484	748.60	30,724
743.60	646	748.70	31,955
743.70	833	748.80	33,229
743.80	1,045	748.90	34,547
743.90	1,282	749.00	35,909
744.00 744.10	1,544 1,826	749.10 749.20	37,326 38,809
744.10	2,119	749.20	40,358
744.30	2,426	749.40	41,973
744.40	2,744	749.50	43,655
744.50	3,076	749.60	45,403
744.60	3,420	749.70	47,217
744.70	3,777	749.80	49,098
744.80	4,146	749.90	51,044
744.90	4,529	750.00	53,058
745.00	4,924	750.10	55,151
745.10	5,333	750.20	57,341
745.20	5,756	750.30	59,625
745.30 745.40	6,193 6,644	750.40 750.50	62,005 64,481
745.50	7,109	750.60	67,052
745.60	7,589	750.70	69,718
745.70	8,083	750.80	72,479
745.80	8,590	750.90	75,336
745.90	9,112	751.00	78,289
746.00	9,648		
746.10	10,200		
746.20	10,769		
746.30	11,356		
746.40	11,960		
746.50	12,581		
746.60 746.70	13,219 13,874		
746.80	14,545		
746.90	15,232		
747.00	15,935		
747.10	16,658		
747.20	17,405		
747.30	18,176		
747.40	18,971		
747.50	19,790		
747.60	20,633		
		l	

Summary for Link 2AR: 2A Reach

Inflow Are	a =	73.409 ac, 56.57% Impervious, Inflow Depth = 3.30" for 25-yr event
Inflow	=	241.86 cfs @ 12.14 hrs, Volume= 20.206 af
Primary	=	239.52 cfs @ 12.25 hrs, Volume= 20.206 af, Atten= 1%, Lag= 6.9 min

Primary outflow = Inflow delayed by 6.9 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BR: 2B Reach

Inflow Are	a =	1.841 ac, 12.33% Impervious, Inflow Depth = 3.41" for 25-yr event
Inflow	=	5.32 cfs @ 12.21 hrs, Volume= 0.523 af
Primary	=	5.28 cfs @ 12.34 hrs, Volume= 0.523 af, Atten= 1%, Lag= 8.1 min

Primary outflow = Inflow delayed by 8.0 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AR: 3A Reach

Inflow Are	a =	28.772 ac, 35.84% Impervious, Inflow Depth = 2.43" for 25-yr event
Inflow	=	50.40 cfs @ 12.36 hrs, Volume= 5.824 af
Primary	=	50.27 cfs @ 12.42 hrs, Volume= 5.824 af, Atten= 0%, Lag= 3.7 min

Primary outflow = Inflow delayed by 3.7 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BR: 3B Reach

Inflow Are	a =	22.528 ac,	6.64% Impervious,	Inflow Depth = 2	2.26" for 25-yr event
Inflow	=	39.69 cfs @	12.31 hrs, Volume	= 4.237 a	f
Primary	=	39.59 cfs @	12.45 hrs, Volume	= 4.237 a	f, Atten= 0%, Lag= 8.6 min

Primary outflow = Inflow delayed by 8.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-1: DP #1 - Rush Crk Trib.

 Inflow Area =
 69.450 ac, 17.61% Impervious, Inflow Depth =
 2.57" for 25-yr event

 Inflow =
 106.13 cfs @
 12.35 hrs, Volume=
 14.856 af

 Primary =
 106.13 cfs @
 12.35 hrs, Volume=
 14.856 af, Atten= 0%, Lag= 0.0 min

Summary for Link DP-2: DP #2 - Smokes Crk

Inflow Are	a =	75.250 ac, 55.48% Impervious, Inflow Depth = 3.31" for 25-yr event
Inflow	=	244.25 cfs @ 12.25 hrs, Volume= 20.729 af
Primary	=	244.25 cfs @ 12.25 hrs, Volume= 20.729 af, Atten= 0%, Lag= 0.0 min

Summary for Link DP-3: DP #3 - Rush Crk

Inflow Are	a =	51.300 ac, 23.02% Impervious, Inflow Depth = 2.35" for 25-yr event
Inflow	=	89.66 cfs @ 12.43 hrs, Volume= 10.061 af
Primary	=	89.66 cfs @ 12.43 hrs, Volume= 10.061 af, Atten= 0%, Lag= 0.0 min

Summary for Link ET: Existing Conditions Total Offsite

 Inflow Area =
 196.000 ac, 33.57% Impervious, Inflow Depth =
 2.79" for 25-yr event

 Inflow =
 415.86 cfs @
 12.29 hrs, Volume=
 45.645 af

 Primary =
 415.86 cfs @
 12.29 hrs, Volume=
 45.645 af, Atten= 0%, Lag= 0.0 min

Summary for Subcatchment 1A-I: DA #1A-I

Runoff = 137.05 cfs @ 12.36 hrs, Volume= 16.213 af, Depth= 3.72"

Area	(ac) (CN Des	cription		
0.	053	74 >75	% Grass c	over, Good	, HSG C
32.	764	80 >75	% Grass c	over, Good	, HSG D
0.	000		ed parking		
	684		ed parking		
0.	000		vel surface	,	
	171		vel surface	,	
1.	631	77 Wo	ods, Good,	HSG D	
52.	303	86 We	ighted Ave	rage	
	619	-	57% Pervio		
10.	684	20.4	13% Imperv	vious Area	
_					
Tc	Length			Capacity	Description
(min)	(feet)			(cfs)	
30.2	150	0.0110	0.08		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.20"
1.4	139	0.0110	1.69		Shallow Concentrated Flow,
	- 10			100.00	Unpaved Kv= 16.1 fps
2.2	513	0.0060	3.90	102.86	Trap/Vee/Rect Channel Flow,
					Bot.W=25.00' D=0.80' Z= 10.0 '/' Top.W=41.00'
0.7	4 700		4 50		n= 0.022 Earth, clean & straight
6.7	1,798		4.50		Direct Entry, Pipe Flow
40.5	2,600	Total			

Summary for Subcatchment 1A-II: DA #1A-II

Runoff = 114.68 cfs @ 11.98 hrs, Volume= 6.220 af, Depth= 4.35"

Area	(ac) (CN Des	cription			
0.	000	74 >75	>75% Grass cover, Good, HSG C			
4.	803	80 >75	% Grass co	over, Good	, HSG D	
0.	000	98 Pav	ed parking	, HSG C		
1.	545		ed parking			
			vel surface	,		
10.	799	96 Grav	vel surface	, HSG D		
			ghted Aver	0		
	602		9% Pervio			
1.	545	9.01	% Impervi	ous Area		
Та	l a va avtila	Clana	Valacity	Conseitu	Description	
Tc (min)	Length		Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
2.7	150	0.0100	0.94		Sheet Flow,	
0.3	25	0.0100	1.61		Smooth surfaces n= 0.011 P2= 2.20"	
0.5	25	0.0100	1.01		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps	
3.9	930	0.0100	3.93	33.44	Trap/Vee/Rect Channel Flow,	
0.9	300	0.0100	0.00	55.44	Bot.W=15.00' D=0.50' Z= 4.0 '/' Top.W=19.00'	
					n = 0.022 Earth, clean & straight	
0.3	90		4.50		Direct Entry, Pipe Flow	
7.2	1,195	Total				

Existing Conditions

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 2A: DA #2A

Runoff = 336.92 cfs @ 12.13 hrs, Volume= 28.673 af, Depth= 4.69"

Area ((ac) C	N Dese	cription			
1.9	970 7	74 >75% Grass cover, Good, HSG C				
4.	741 8	80 >75 ^c	% Grass co	over, Good,	, HSG D	
15.	520 9	8 Pave	ed parking	, HSG C		
26.	004 9	8 Pave	ed parking	, HSG D		
4.9	966 9	6 Grav	/el surface	, HSG C		
19.	613 9	6 Grav	/el surface	, HSG D		
0.	595 7	'7 Woo	ods, Good,	HSG D		
73.4	409 9	5 Weig	ghted Aver	rage		
31.	885	43.4	3% Pervio	us Area		
41.	524	56.5	7% Imper	∕ious Area		
Tc	Length	Slope	Velocity		Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
1.9	98	0.0100	0.86		Sheet Flow,	
					Smooth surfaces n= 0.011 P2= 2.20"	
13.7	65	0.0150	0.08		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.20"	
0.7	80	0.0150	1.97		Shallow Concentrated Flow,	
					Unpaved Kv= 16.1 fps	
0.8	88	0.0090	1.93		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
2.8	360	0.0110	2.13		Shallow Concentrated Flow, Gravel	
					Paved Kv= 20.3 fps	
1.7	446		4.50		Direct Entry, Pipe Flow	
21.6	1,137	Total				

Existing Conditions

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 2B: DA #2B

Runoff = 7.36 cfs @ 12.21 hrs, Volume= 0.737 af, Depth= 4.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=5.27"

Area	(ac) C	N Des	cription				
0	.000 7	74 >75°	>75% Grass cover, Good, HSG C				
0	.039 8	30 >759	% Grass co	over, Good	, HSG D		
0	0.000 98 Paved parking, HSG C						
			ed parking				
			vel surface				
			vel surface	,			
0	0.000 7	7 Woo	ods, Good,	HSG D			
1	.841 9		ghted Aver	0			
	.614		7% Pervio				
0	.227	12.3	3% Imper	/ious Area			
_							
Tc	0	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
9.4	47	0.0200	0.08		Sheet Flow,		
					Grass: Dense n= 0.240 P2= 2.20"		
0.9	55	0.0200	1.01		Sheet Flow,		
	10				Smooth surfaces n= 0.011 P2= 2.20"		
9.6	48	0.0200	0.08		Sheet Flow,		
4.0	405	0.0070	0.05		Grass: Dense n= 0.240 P2= 2.20"		
1.0	165	0.0270	2.65		Shallow Concentrated Flow,		
1.3	010	0.0470	0.05		Unpaved Kv= 16.1 fps		
1.3	210	0.0170	2.65		Shallow Concentrated Flow,		
3.4	465	0.0200	2.28		Paved Kv= 20.3 fps Shallow Concentrated Flow,		
5.4	405	0.0200	2.20		Unpaved Kv= 16.1 fps		
0.2	30	0.0200	2.87		Shallow Concentrated Flow,		
0.2	50	0.0200	2.07		Paved Kv= 20.3 fps		
2.3	287	0.0170	2.10		Shallow Concentrated Flow,		
2.0	201	0.0110	2.10		Unpaved $Kv = 16.1 \text{ fps}$		
28.1	1 307	Total					

28.1 1,307 Total

Summary for Subcatchment 3A: DA #3A

Runoff 76.73 cfs @ 12.35 hrs, Volume= 8.919 af, Depth= 3.72" =

Area	(ac) (CN Des	cription		
0	.000	74 >75	% Grass co	over, Good	, HSG C
18	.459	80 >759	% Grass co	over, Good	, HSG D
-			ed parking		
			ed parking	,	
			el surface	,	
0	.000	96 Grav	el surface	, HSG D	
-			ghted Aver	•	
-	.459		6% Pervio		
10	.313	35.8	4% Imper	ious Area/	
То	Longth	Slope	Volocity	Conosity	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
31.4	150	· · · /	0.08	(013)	Sheet Flow,
31.4	150	0.0100	0.00		Grass: Dense n= 0.240 P2= 2.20"
3.9	380	0.0100	1.61		Shallow Concentrated Flow,
0.0	000	0.0100	1.01		Unpaved Kv= 16.1 fps
1.2	146	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
2.9	774		4.50		Direct Entry,
39.4	1,450	Total			

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing Conditions Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 LC Page 61

Summary for Subcatchment 3B: DA #3B

Runoff = 61.73 cfs @ 12.30 hrs, Volume= 6.605 af, Depth= 3.52"

Area	(ac) (CN	Desc	cription		
0.	000	74	>75%	% Grass co	over, Good	, HSG C
14.	241	80	>75%	% Grass co	over, Good	, HSG D
0.	000			ed parking		
	496			ed parking		
	000			el surface		
4.	902			el surface	,	
1.	889	77	Woo	ds, Good,	HSG D	
22.	528	84	Weig	ghted Aver	age	
	032		93.3	6% Pervio	us Area	
1.	496		6.64	% Impervi	ous Area	
-					0	
Tc	Length		ope	Velocity	Capacity	Description
(min)	(feet)		ft/ft)	(ft/sec)	(cfs)	
26.7	150	0.0	150	0.09		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.20"
6.9	820	0.0	150	1.97		Shallow Concentrated Flow,
. –						Unpaved Kv= 16.1 fps
1.5	315			3.50		Direct Entry, Swale Flow
35.1	1,285	Tot	al			

Summary for Pond ExP: Ex Pond

Inflow Area =	17.147 ac,	9.01% Impervious, Inflow	Depth = 4.35" for 100-yr event
Inflow =	114.68 cfs @	11.98 hrs, Volume=	6.220 af
Outflow =	75.03 cfs @	12.10 hrs, Volume=	6.214 af, Atten= 35%, Lag= 6.9 min
Primary =	75.03 cfs @	12.10 hrs, Volume=	6.214 af

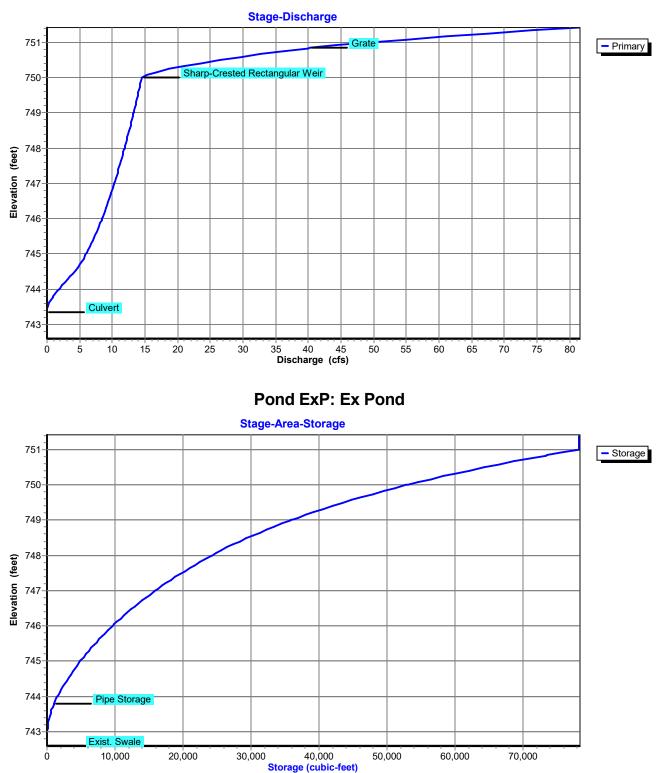
Routing by Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 751.35' @ 12.09 hrs Surf.Area= 30,000 sf Storage= 78,289 cf

Plug-Flow detention time= 28.9 min calculated for 6.210 af (100% of inflow) Center-of-Mass det. time= 28.3 min (807.1 - 778.8)

Volume	Inve	rt Avail.Sto	rage Stora	ge Description	
#1	742.6	0' 77,68	38 cf Exist	. Swale (Prismatio	c) Listed below (Recalc)
#2	743.8			Round Pipe Stor	
				5.0' S= 0.0260 '/'	
		78,28	39 cf Total	Available Storage	
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
742.6	-	1	0	0	
743.0		245	49	49	
744.0		2,744	1,495	1,544	
745.0	-	3,915	3,330	4,873	
746.0	-	5,216	4,566	9,439	
747.0		6,916	6,066		
748.0		9,428	8,172		
749.0		13,835	11,632	35,308	
750.0		20,462	17,149		
751.0	00	30,000	25,231	77,688	
Device	Routing	Invert	Outlet Dev	ices	
#1	Primary	742.29'		nd Culvert	
#1	Filliary	142.29			e headwall, Ke= 0.500
					742.09' S= 0.0019 '/' Cc= 0.900
				Flow Area= 4.91 s	
#2	Device 1	743.34'		nd Culvert	I
#2	Device	740.04			conforming to fill, Ke= 0.500
					742.98' S= 0.0144 '/' Cc= 0.900
				Flow Area= 1.23 s	
#3	Device 1	750.84'		.0" Horiz. Grate	
#5	DEVICE I	100.04		weir flow at low he	
#4	Primary	750.00'			ectangular Weir 2 End Contraction(s)
π	i iiiiai y	100.00	isto iong		

Primary OutFlow Max=72.53 cfs @ 12.10 hrs HW=751.31' (Free Discharge)

-**1=Culvert** (Passes 24.56 cfs of 65.90 cfs potential flow)


-2=Culvert (Inlet Controls 16.02 cfs @ 13.05 fps)

3=Grate (Weir Controls 8.54 cfs @ 2.25 fps)

4=Sharp-Crested Rectangular Weir (Weir Controls 47.97 cfs @ 3.75 fps)

Existing Conditions

Existing Conditions Type II 24-hr 100-yr Rainfall=5.27" Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC Printed 9/29/2022 Page 63

Pond ExP: Ex Pond

Existing ConditionsType II IPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing Conditions Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 64

Stage-Discharge for Pond ExP: Ex Pond

Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet) 747.70	(cfs) 11.42
742.60 742.70	0.00 0.00	747.80	11.42
742.80	0.00	747.90	11.72
742.90	0.00	748.00	11.87
743.00 743.10	0.00 0.00	748.10 748.20	12.02 12.16
743.20	0.00	748.30	12.10
743.30	0.00	748.40	12.44
743.40 743.50	0.02 0.12	748.50 748.60	12.58 12.72
743.60	0.12	748.00	12.72
743.70	0.60	748.80	12.99
743.80	0.95	748.90	13.13
743.90 744.00	1.36 1.81	749.00 749.10	13.26 13.39
744.10	2.27	749.20	13.52
744.20	2.76	749.30	13.65
744.30 744.40	3.26 3.77	749.40 749.50	13.78 13.90
744.50	4.28	749.60	14.03
744.60	4.71	749.70	14.15
744.70 744.80	5.07 5.40	749.80 749.90	14.27 14.40
744.80	5.40	749.90	14.40
745.00	6.01	750.10	15.67
745.10 745.20	6.30 6.57	750.20 750.30	17.67 20.21
745.30	6.83	750.30	23.20
745.40	7.08	750.50	26.55
745.50	7.32	750.60	30.24
745.60 745.70	7.56 7.78	750.70 750.80	34.22 38.47
745.80	8.00	750.90	43.36
745.90	8.22	751.00	49.39
746.00 746.10	8.43 8.63	751.10 751.20	56.15 63.50
746.20	8.83	751.30	71.37
746.30	9.03	751.40	79.73
746.40 746.50	9.22 9.41		
746.60	9.59		
746.70	9.77		
746.80 746.90	9.95 10.12		
747.00	10.12		
747.10	10.46		
747.20 747.30	10.63 10.79		
747.30	10.79		
747.50	11.11		
747.60	11.27		

Existing ConditionsType II IPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Existing Conditions Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 65

Stage-Area-Storage for Pond ExP: Ex Pond

Elevation	Storage	Elevation	Storago
(feet)	(cubic-feet)	(feet)	Storage (cubic-feet)
742.60	0	747.70	21,499
742.70	3	747.80	22,390
742.80	12	747.90	23,305
742.90	28	748.00	24,244
743.00	49	748.10	25,216
743.10	86	748.20	26,232
743.20	148	748.30	27,290
743.30	235	748.40	28,391
743.40 743.50	347 484	748.50 748.60	29,536 30,724
743.60	646	748.70	31,955
743.70	833	748.80	33,229
743.80	1,045	748.90	34,547
743.90	1,282	749.00	35,909
744.00	1,544	749.10	37,326
744.10	1,826	749.20	38,809
744.20	2,119	749.30	40,358
744.30	2,426	749.40	41,973
744.40 744.50	2,744 3,076	749.50 749.60	43,655 45,403
744.60	3,420	749.70	47,217
744.70	3,777	749.80	49,098
744.80	4,146	749.90	51,044
744.90	4,529	750.00	53,058
745.00	4,924	750.10	55,151
745.10	5,333	750.20	57,341
745.20	5,756	750.30	59,625
745.30 745.40	6,193 6,644	750.40	62,005 64,481
745.50	7,109	750.50 750.60	67,052
745.60	7,589	750.70	69,718
745.70	8,083	750.80	72,479
745.80	8,590	750.90	75,336
745.90	9,112	751.00	78,289
746.00	9,648	751.10	78,289
746.10	10,200	751.20	78,289
746.20	10,769 11,356	751.30 751.40	78,289
746.30 746.40	11,960	751.40	78,289
746.50	12,581		
746.60	13,219		
746.70	13,874		
746.80	14,545		
746.90	15,232		
747.00	15,935		
747.10	16,658		
747.20 747.30	17,405 18,176		
747.30	18,971		
747.50	19,790		
747.60	20,633		

Summary for Link 2AR: 2A Reach

Inflow Are	ea =	73.409 ac, 56.57% Impervious, Inflow Depth = 4.69" for 100-yr event
Inflow	=	336.92 cfs @ 12.13 hrs, Volume= 28.673 af
Primary	=	333.68 cfs @ 12.25 hrs, Volume= 28.673 af, Atten= 1%, Lag= 6.9 min

Primary outflow = Inflow delayed by 6.9 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BR: 2B Reach

Inflow Are	a =	1.841 ac, 12.33% Impervious, Inflow Depth = 4.80" for 100-yr event
Inflow	=	7.36 cfs @ 12.21 hrs, Volume= 0.737 af
Primary	=	7.31 cfs @ 12.34 hrs, Volume= 0.737 af, Atten= 1%, Lag= 8.1 min

Primary outflow = Inflow delayed by 8.0 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AR: 3A Reach

Inflow Are	a =	28.772 ac, 35.84% Impervious, Inflow Depth = 3.72" for 100-yr event
Inflow	=	76.73 cfs @ 12.35 hrs, Volume= 8.919 af
Primary	=	76.53 cfs @ 12.41 hrs, Volume= 8.919 af, Atten= 0%, Lag= 3.8 min

Primary outflow = Inflow delayed by 3.7 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BR: 3B Reach

Inflow Area =		22.528 ac,	6.64% Impervious,	Inflow Depth =	3.52"	for 100-yr event
Inflow	=	61.73 cfs @	12.30 hrs, Volume	= 6.605	af	
Primary	=	61.57 cfs @	12.44 hrs, Volume	= 6.605	af, Atte	en= 0%, Lag= 8.6 min

Primary outflow = Inflow delayed by 8.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-1: DP #1 - Rush Crk Trib.

Inflow Are	ea =	69.450 ac, 17.61% Impervious, Inflow Depth = 3.88" for 100-yr event
Inflow	=	162.21 cfs @ 12.33 hrs, Volume= 22.427 af
Primary	=	162.21 cfs @ 12.33 hrs, Volume= 22.427 af, Atten= 0%, Lag= 0.0 min

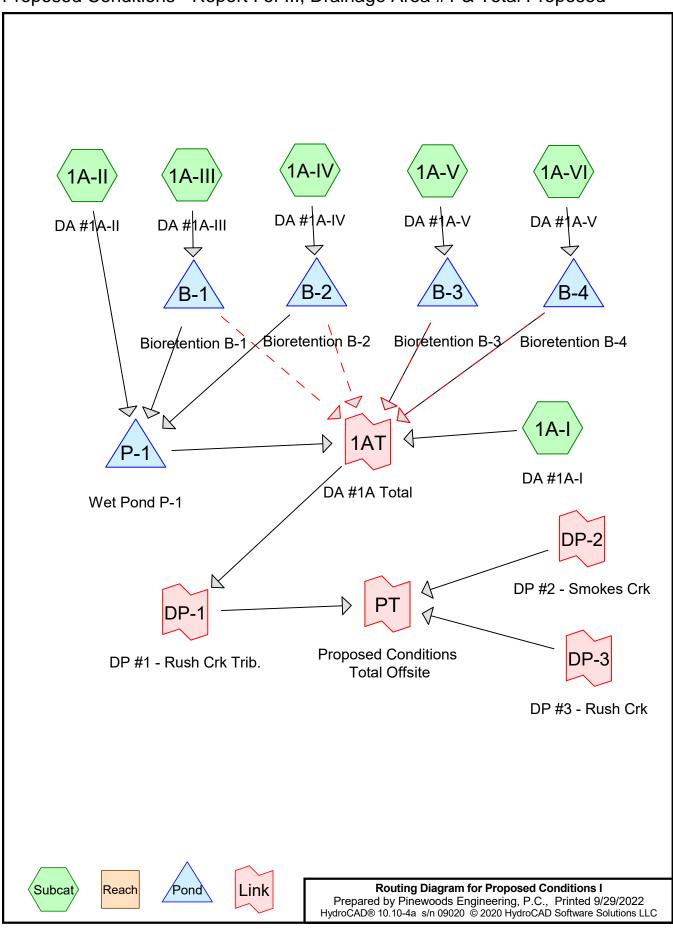
Summary for Link DP-2: DP #2 - Smokes Crk

Inflow Are	ea =	75.250 ac, 55.48% Impervious, Inflow Depth = 4.69" for 100-yr event
Inflow	=	340.23 cfs @ 12.25 hrs, Volume= 29.409 af
Primary	=	340.23 cfs @ 12.25 hrs, Volume= 29.409 af, Atten= 0%, Lag= 0.0 min

Summary for Link DP-3: DP #3 - Rush Crk

 Inflow Area =
 51.300 ac, 23.02% Impervious, Inflow Depth =
 3.63" for 100-yr event

 Inflow =
 137.79 cfs @
 12.43 hrs, Volume=
 15.524 af


 Primary =
 137.79 cfs @
 12.43 hrs, Volume=
 15.524 af, Atten= 0%, Lag= 0.0 min

Summary for Link ET: Existing Conditions Total Offsite

 Inflow Area =
 196.000 ac, 33.57% Impervious, Inflow Depth =
 4.12" for 100-yr event

 Inflow =
 607.60 cfs @
 12.28 hrs, Volume=
 67.360 af

 Primary =
 607.60 cfs @
 12.28 hrs, Volume=
 67.360 af, Atten= 0%, Lag= 0.0 min

Summary for Subcatchment 1A-I: DA #1A-I

Runoff = 18.87 cfs @ 12.28 hrs, Volume= 1.947 af, Depth= 0.90"

A	rea (ac) (CN E	Desc	cription		
	0.0	000	74 >	·75%	% Grass co	over, Good	, HSG C
	11.5	558	80 >	·75%	% Grass co	over, Good	, HSG D
	0.0	000	98 F	Pave	ed parking	HSG C	
	13.4	442	98 F	Pave	ed parking	HSG D	
	0.0	000	96 0	Grav	el surface	, HSG C	
	0.0	000	96 0	Grav	el surface	, HSG D	
	1.()44	<u>77 V</u>	Voo	ds, Good,	HSG D	
	26.0	044			ghted Aver		
	12.6	602	4	8.3	9% Pervio	us Area	
	13.4	442	5	51.6	1% Imperv	vious Area	
	_						
	Tc	Length			Velocity	Capacity	Description
(m	nin)	(feet)	(ft	/ft)	(ft/sec)	(cfs)	
2	6.7	150	0.01	50	0.09		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.20"
	2.9	340	0.01	50	1.97		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.4	75	0.02	00	2.87		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	2.8	760			4.50		Direct Entry, Pipe Flow
3	2.8	1,325	Tota	I			

Summary for Subcatchment 1A-II: DA #1A-II

Runoff = 18.84 cfs @ 11.97 hrs, Volume= 0.923 af, Depth= 1.09"

_	Area ((ac)	CN	Desc	cription							
	0.	000	74	>75%	% Grass co	over, Good	, HSG C					
	2.	746	80	>75% Grass cover, Good, HSG D								
		000	98		ed parking							
		783	98		ed parking							
	0.	000	96		el surface	,						
		000	96		el surface	,						
	0.:	587	77	Woo	ds, Good,	HSG D						
	10.	116	92		ghted Aver	0						
	-	333			5% Pervio							
	6.	783		67.0	5% Imper	ious Area/						
	-		~			o						
	ŢĊ	Length		lope	Velocity	Capacity	Description					
_	(min)	(feet		ft/ft)	(ft/sec)	(cfs)						
	1.6	100	0.0	170	1.07		Sheet Flow,					
							Smooth surfaces n= 0.011 P2= 2.20"					
	0.9	140	0.0	170	2.65		Shallow Concentrated Flow,					
							Paved Kv= 20.3 fps					
	2.3	630			4.50		Direct Entry, Pipe Flow					
	4.8	870) Tot	tal, Ir	ncreased t	o minimum	Tc = 6.0 min					

Summary for Subcatchment 1A-III: DA #1A-III

Runoff = 11.84 cfs @ 11.97 hrs, Volume= 0.599 af, Depth= 1.33"

/	Area (ac) (CN D)esc	cription		
	0.0	000	74 >	75%	% Grass co	over, Good	, HSG C
	0.8	383	80 >	75%	% Grass co	over, Good,	, HSG D
	0.0	000			ed parking		
	4.5	519	98 P	ave	ed parking	, HSG D	
	0.0	000	96 G	Grav	el surface	, HSG C	
	0.0	000	96 G	Grav	el surface	, HSG D	
	5.4	102	95 V	Veig	ghted Aver	age	
	0.8	383	1	6.3	5% Pervio	us Area	
	4.5	519	8	3.6	5% Imper	/ious Area	
	Тс	Length			Velocity	Capacity	Description
(r	min)	(feet)	(ft/	/ft)	(ft/sec)	(cfs)	
	1.6	100	0.01	70	1.07		Sheet Flow,
							Smooth surfaces n= 0.011 P2= 2.20"
	1.3	205	0.01	70	2.65		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	2.9	305	Tota	I, Ir	ncreased t	o minimum	Tc = 6.0 min
				•			

Summary for Subcatchment 1A-IV: DA #1A-IV

Runoff = 12.57 cfs @ 11.97 hrs, Volume= 0.616 af, Depth= 1.09"

Area	(ac) (CN D	escription									
0.	000	74 >7	75% Grass c	over, Good	, HSG C							
2.	082	80 >7	>75% Grass cover, Good, HSG D									
0.	000		aved parking									
			aved parking									
			ravel surface	,								
0.	000	<u>96 G</u>	ravel surface	e, HSG D								
6.	750	92 W	eighted Ave	rage								
2.	082	30).84% Pervic	ous Area								
4.	668	69	9.16% Imper	vious Area								
Tc (min)	Length (feet)		•	Capacity (cfs)	Description							
1.6	100	0.017	<i>'</i> 0 1.07		Sheet Flow,							
0.7	110	0.017	70 2.65		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps							
2.4	360		2.50		Direct Entry,							
4.7	570	Total	, Increased	to minimum	n Tc = 6.0 min							

Summary for Subcatchment 1A-V: DA #1A-V

Runoff = 11.08 cfs @ 11.97 hrs, Volume= 0.553 af, Depth= 1.25"

Area	(ac) (N Des	cription									
0.	000	74 >75% Grass cover, Good, HSG C										
1.	233	80 >75	75% Grass cover, Good, HSG D									
0.	000		ed parking									
			ed parking									
			vel surface	,								
0.	000	96 Gra	vel surface	, HSG D								
-		94 Wei	ghted Avei	rage								
	233	=•	7% Pervio									
4.	088	76.8	3% Imper	∕ious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
1.6	100	0.0170	1.07		Sheet Flow,							
1.4	225	0.0170	2.65		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps							
1.3	200		2.50		Direct Entry, Swale Flow							
4.3	525	Total, I	ncreased t	o minimum	Tc = 6.0 min							

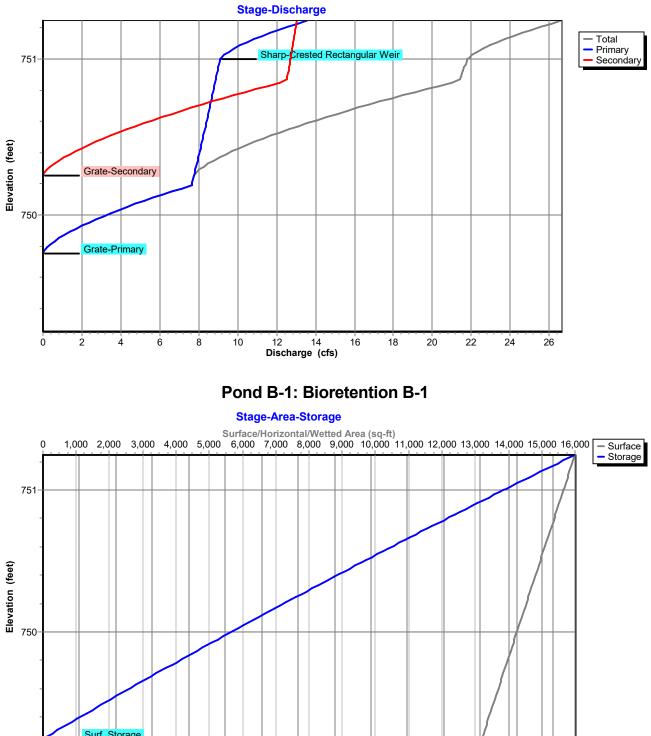
Summary for Subcatchment 1A-VI: DA #1A-V

Runoff = 5.36 cfs @ 11.97 hrs, Volume= 0.267 af, Depth= 1.25"

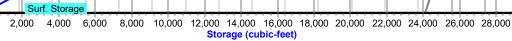
Area (a	ic) Cl	N Desc	cription									
0.00	00 7	74 >75% Grass cover, Good, HSG C										
0.54	42 8		>75% Grass cover, Good, HSG D									
0.00			ed parking									
2.03			ed parking									
0.00			el surface									
0.00	00 9	6 Grav	el surface	, HSG D								
2.57	72 9	4 Weig	ghted Aver	age								
0.54		-	7% Pervio									
2.03	30	78.9	3% Imperv	vious Area								
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
1.5	100	0.0200	1.14		Sheet Flow,							
2.0	350	0.0200	2.87		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps							
1.3	200		2.50		Direct Entry, Swale Flow							
4.8	650	Total, li	ncreased t	o minimum	Tc = 6.0 min							

Summary for Pond B-1: Bioretention B-1

Inflow Outflow Primary	Inflow Area = 5.402 ac, 83.65% Impervious, Inflow Depth = 1.33" for 1-yr event Inflow = 11.84 cfs @ 11.97 hrs, Volume= 0.599 af Outflow = 5.67 cfs @ 12.07 hrs, Volume= 0.444 af, Atten= 52%, Lag= 6.4 min Primary = 5.67 cfs @ 12.07 hrs, Volume= 0.444 af Secondary = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af										
	Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 750.11' @ 12.07 hrs Surf.Area= 14,405 sf Storage= 11,882 cf										
Plug-Flow detention time= 172.2 min calculated for 0.443 af (74% of inflow) Center-of-Mass det. time= 81.6 min (878.0 - 796.5)											
Volume	Invert	Avail.Sto	rage Storage Description								
#1	749.25'		00 cf Surf. Storage (Prismatic) Listed below (Recalc)								
Elevatio (fee		Area sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)								
749.2		3,200	0 0								
751.2		5,000	29,200 29,200								
101.2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20,200 20,200								
Device	Routing	Invert	Outlet Devices								
#1	Primary	747.25'	15.0" Round Culvert-Primary								
	-		L= 87.0' CPP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 747.25' / 747.00' S= 0.0029 '/' Cc= 0.900								
			n= 0.012, Flow Area= 1.23 sf								
#2	Device 1	749.75'	24.0" x 24.0" Horiz. Grate-Primary C= 0.600								
			Limited to weir flow at low heads								
#3	Primary	751.00'	10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)								
#4	Secondary	745.75'	15.0" Round Culvert-Secondary								
	5		L= 45.0' CPP, square edge headwall, Ke= 0.500								
			Inlet / Outlet Invert= 745.75' / 744.13' S= 0.0360 '/' Cc= 0.900								
			n= 0.012, Flow Area= 1.23 sf								
#5	Device 4	750.25'	24.0" x 24.0" Horiz. Grate-Secondary C= 0.600								
			Limited to weir flow at low heads								
			@ 12.07 hrs HW=750.10' TW=747.58' (Dynamic Tailwater)								
	1=Culvert-Primary (Passes 5.52 cfs of 7.46 cfs potential flow)										
<u>-2</u> =	T_2=Grate-Primary (Weir Controls 5.52 cfs @ 1.95 fps)										


-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=749.25' TW=0.00' (Dynamic Tailwater) 4=Culvert-Secondary (Passes 0.00 cfs of 10.02 cfs potential flow) 5=Grate-Secondary (Controls 0.00 cfs)


Proposed Conditions I

Ó

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Pond B-1: Bioretention B-1

Proposed Conditions ITPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 10

Stage-Discharge for Pond B-1: Bioretention B-1

			•	I			. .
Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
749.25	0.00	0.00	0.00	750.27	7.86	7.79	0.07
749.27	0.00	0.00	0.00	750.29	8.04	7.83	0.21
749.29	0.00	0.00	0.00	750.31	8.25	7.87	0.38
749.31	0.00	0.00	0.00	750.33	8.50	7.90	0.59
749.33	0.00	0.00	0.00	750.35	8.77	7.94	0.83
749.35	0.00	0.00	0.00	750.37	9.07	7.98	1.09
749.37	0.00	0.00	0.00	750.39	9.39	8.02	1.37
749.39	0.00	0.00	0.00	750.41	9.73	8.06	1.67
749.41	0.00	0.00	0.00	750.43	10.09	8.09	2.00
749.43	0.00	0.00	0.00	750.45	10.47	8.13	2.34
749.45	0.00	0.00	0.00	750.47	10.87	8.17	2.70
749.47	0.00	0.00	0.00	750.49	11.28	8.20	3.08
749.49	0.00	0.00	0.00	750.51	11.71	8.24	3.47
749.51	0.00	0.00	0.00	750.53	12.15	8.28	3.88
749.53	0.00	0.00	0.00	750.55	12.61	8.31	4.30
749.55	0.00	0.00	0.00	750.57	13.08	8.35	4.74
749.57	0.00	0.00	0.00	750.59	13.57	8.38	5.19
749.59	0.00	0.00	0.00	750.61	14.07	8.42	5.65
749.61	0.00	0.00	0.00	750.63	14.58	8.46	6.13
749.63	0.00	0.00	0.00	750.65	15.11	8.49	6.62
749.65	0.00	0.00	0.00	750.67	15.65	8.53	7.12
749.67	0.00	0.00	0.00	750.69	16.20	8.56	7.64
749.69	0.00	0.00	0.00	750.71	16.76	8.60	8.16
749.71	0.00	0.00	0.00	750.73	17.33	8.63	8.70
749.73	0.00	0.00	0.00	750.75	17.91	8.67	9.25
749.75	0.00	0.00	0.00	750.77	18.51	8.70	9.81
749.73	0.00	0.00	0.00	750.79	19.12	8.73	10.38
749.79	0.07	0.07	0.00	750.81	19.72	8.77	10.36
749.81	0.38	0.21	0.00	750.83	20.36	8.80	11.56
749.83	0.58	0.59	0.00	750.85	20.30	8.84	12.16
749.85	0.83	0.83	0.00	750.85	21.00	8.87	12.10
749.85	1.09	1.09	0.00	750.87	21.40	8.91	12.55
749.87	1.09	1.09	0.00	750.89	21.40	8.94	12.50
749.89	1.67	1.67	0.00	750.91	21.52	8.94 8.97	12.56
749.93	2.00 2.34	2.00 2.34	0.00	750.95 750.97	21.64 21.71	9.01	12.64
749.95	2.34		0.00			9.04	12.67
749.97		2.70	0.00	750.99	21.77	9.07	12.69
749.99	3.08	3.08	0.00	751.01	21.86	9.14	12.72
750.01	3.47	3.47	0.00	751.03	22.06	9.31	12.75
750.03	3.88	3.88	0.00	751.05	22.31	9.54	12.78
750.05	4.30	4.30	0.00	751.07	22.61	9.81	12.80
750.07	4.74	4.74	0.00	751.09	22.95	10.12	12.83
750.09	5.19	5.19	0.00	751.11	23.32	10.46	12.86
750.11	5.65	5.65	0.00	751.13	23.71	10.83	12.88
750.13	6.13	6.13	0.00	751.15	24.14	11.23	12.91
750.15	6.62	6.62	0.00	751.17	24.59	11.65	12.94
750.17	7.12	7.12	0.00	751.19	25.06	12.10	12.97
750.19	7.63	7.63	0.00	751.21	25.56	12.56	12.99
750.21	7.67	7.67	0.00	751.23	26.07	13.05	13.02
750.23	7.71	7.71	0.00	751.25	26.61	13.56	13.05
750.25	7.75	7.75	0.00				
				l			

Proposed Conditions ITPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

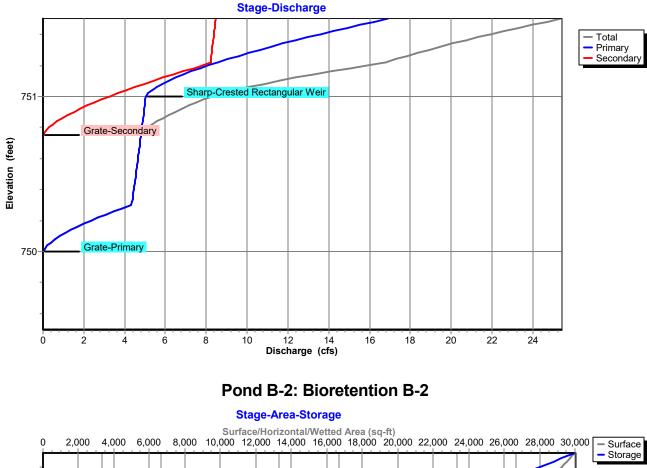
Stage-Area-Storage for Pond B-1: Bioretention B-1

	.	e (. _ , .,		e /
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
749.25	13,200	0	750.27	14,628	14,192
749.27	13,228	264	750.29	14,656	14,485
749.29	13,256	529	750.31	14,684	14,779
749.31	13,284	795	750.33	14,712	15,072
749.33	13,312	1,060	750.35	14,740	15,367
749.35	13,340	1,327	750.37	14,768	15,662
749.37	13,368	1,594	750.39	14,796	15,958
749.39	13,396	1,862	750.41	14,824	16,254
749.41	13,424	2,130	750.43	14,852	16,551
749.43	13,452	2,399	750.45	14,880	16,848
749.45	13,480	2,668	750.47	14,908	17,146
749.47	13,508	2,938	750.49	14,936	17,444
749.49	13,536	3,208	750.51	14,964	17,743
749.51	13,564	3,479	750.53	14,992	18,043
749.53	13,592	3,751	750.55	15,020	18,343
749.55	13,620	4,023	750.57	15,048	18,644
749.57	13,648	4,296	750.59	15,076	18,945
749.59	13,676	4,569	750.61	15,104	19,247
749.61	13,704	4,843	750.63	15,132	19,549
749.63	13,732	5,117	750.65	15,160	19,852
749.65	13,760	5,392	750.67	15,188	20,155
749.67	13,788	5,667	750.69	15,216	20,460
749.69	13,816	5,944	750.71	15,244	20,400
749.09	13,844	6,220	750.73	15,272	20,704 21,069
749.73	13,872	6,497	750.75	15,300	21,375
749.75	13,900	6,775	750.77	15,328	21,681
749.75	13,928	7,053	750.79	15,326	21,988
749.79	13,956	7,000	750.81	15,384	22,296
749.79	13,984	7,612	750.81	15,384	22,290
749.83	14,012	7,891	750.85	15,440	22,912
749.85	14,040	8,172	750.87	15,468	23,221
749.87	14,068	8,453	750.89	15,496	23,531
749.89	14,096	8,735	750.91	15,524	23,841
749.91	14,124	9,017	750.93	15,552	24,152
749.93	14,152	9,300	750.95	15,580	24,463
749.95	14,180	9,583	750.97	15,608	24,775
749.97	14,208	9,867	750.99	15,636	25,087
749.99	14,236	10,151	751.01	15,664	25,400
750.01	14,264	10,436	751.03	15,692	25,714
750.03	14,292	10,722	751.05	15,720	26,028
750.05	14,320	11,008	751.07	15,748	26,343
750.07	14,348	11,295	751.09	15,776	26,658
750.09	14,376	11,582	751.11	15,804	26,974
750.11	14,404	11,870	751.13	15,832	27,290
750.13	14,432	12,158	751.15	15,860	27,607
750.15	14,460	12,447	751.17	15,888	27,924
750.17	14,488	12,736	751.19	15,916	28,243
750.19	14,516	13,027	751.21	15,944	28,561
750.21	14,544	13,317	751.23	15,972	28,880
750.23	14,572	13,608	751.25	16,000	29,200
750.25	14,600	13,900			

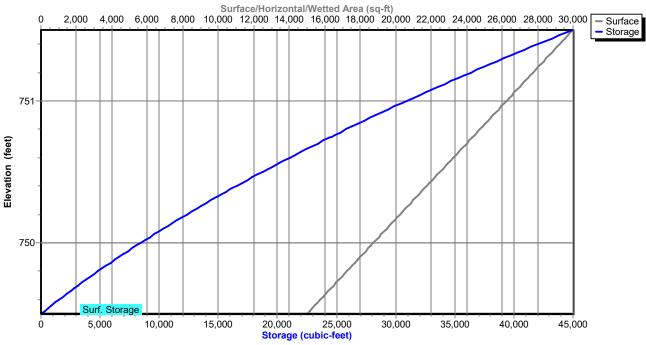
Summary for Pond B-2: Bioretention B-2

Inflow Area = 6.750 ac, 69.16% Impervious, Inflow Depth = 1.09" for 1-yr event Inflow = 12.57 cfs @ 11.97 hrs, Volume= 0.616 af Outflow = 2.85 cfs @ 12.14 hrs, Volume= 0.422 af, Atten= 77%, Lag= 10.4 min Primary = 2.85 cfs @ 12.14 hrs, Volume= 0.422 af Secondary = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af								
			Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Surf.Area= 20,462 sf Storage= 12,912 cf					
			min calculated for 0.422 af (69% of inflow) min(921.5 - 816.3)					
Volume	Invert	Avail.Sto	prage Storage Description					
#1	749.50'	45,00	00 cf Surf. Storage (Prismatic) Listed below (Recalc)					
		•						
Elevatio		Area	Inc.Store Cum.Store					
(fee		sq-ft)	(cubic-feet) (cubic-feet)					
749.: 751.:		5,000),000	0 0 45,000 45,000					
701.	50 50	,000	45,000 45,000					
Device	Routing	Invert	Outlet Devices					
#1	Primary	747.50'	12.0" Round Culvert-Primary					
			L= 105.0' CPP, square edge headwall, Ke= 0.500					
			Inlet / Outlet Invert= 747.50' / 747.25' S= 0.0024 '/' Cc= 0.900					
		^	n= 0.012, Flow Area= 0.79 sf					
#2	Device 1	750.00'	, , , , , , , , , , , , , , , , , , ,					
#3	Secondary	746.00'	Limited to weir flow at low heads 12.0" Round Culvert-Secondary					
#3	Secondary	740.00	L= 130.0' CPP, square edge headwall, Ke= 0.500					
			Inlet / Outlet Invert= 746.00' / 738.10' S= 0.0608 '/' Cc= 0.900					
			n=0.012, Flow Area= 0.79 sf					
#4	Device 3	750.75'						
			Limited to weir flow at low heads					
#5	Primary	751.00'	10.0' Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)					
			@ 12.14 hrs HW=750.23' TW=747.78' (Dynamic Tailwater)					

-**1=Culvert-Primary** (Passes 2.84 cfs of 4.27 cfs potential flow) **—2=Grate-Primary** (Weir Controls 2.84 cfs @ 1.56 fps)


-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=749.50' TW=0.00' (Dynamic Tailwater)


-3=Culvert-Secondary (Passes 0.00 cfs of 6.55 cfs potential flow) -4=Grate-Secondary (Controls 0.00 cfs)

Proposed Conditions I

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Pond B-2: Bioretention B-2

Proposed Conditions IType II 24-hPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 14

Stage-Discharge for Pond B-2: Bioretention B-2

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
749.50	0.00	0.00	0.00	750.52	4.57	4.57	0.00
749.52	0.00	0.00	0.00	750.54	4.59	4.59	0.00
749.54	0.00	0.00	0.00	750.56	4.61	4.61	0.00
749.56	0.00	0.00	0.00	750.58	4.63	4.63	0.00
749.58	0.00	0.00	0.00	750.60	4.65	4.65	0.00
749.60	0.00	0.00	0.00	750.62	4.67	4.67	0.00
749.62	0.00	0.00	0.00	750.64	4.69	4.69	0.00
749.64	0.00	0.00	0.00	750.66	4.71	4.71	0.00
749.66	0.00	0.00	0.00	750.68	4.73	4.73	0.00
749.68	0.00	0.00	0.00	750.70	4.75	4.75	0.00
749.70	0.00	0.00	0.00	750.72	4.77	4.77	0.00
749.72	0.00	0.00	0.00	750.74	4.79	4.79	0.00
749.74	0.00	0.00	0.00	750.76	4.84	4.81	0.03
749.76	0.00	0.00	0.00	750.78	4.97	4.83	0.14
749.78	0.00	0.00	0.00	750.80	5.14	4.85	0.29
749.80	0.00	0.00	0.00	750.82	5.35	4.87	0.48
749.82	0.00	0.00	0.00	750.84	5.59	4.89	0.71
749.84	0.00	0.00	0.00	750.86	5.86	4.91	0.95
749.86	0.00	0.00	0.00	750.88	6.15	4.92	1.23
749.88	0.00	0.00	0.00	750.90	6.46	4.94	1.52
749.90	0.00	0.00	0.00	750.92	6.79	4.96	1.83
749.92	0.00	0.00	0.00	750.94	7.15	4.98	2.17
749.94	0.00	0.00	0.00	750.96	7.52	5.00	2.52
749.96 749.98	0.00 0.00	0.00 0.00	0.00 0.00	750.98 751.00	7.90 8.31	5.02 5.04	2.89 3.27
749.98	0.00	0.00	0.00	751.00	8.82	5.04	3.67
750.00	0.00	0.00	0.00	751.02	9.42	5.33	4.09
750.02	0.21	0.07	0.00	751.04	10.08	5.57	4.52
750.06	0.38	0.38	0.00	751.08	10.81	5.85	4.96
750.08	0.59	0.59	0.00	751.10	11.57	6.16	5.42
750.10	0.83	0.83	0.00	751.12	12.39	6.50	5.89
750.12	1.09	1.09	0.00	751.14	13.24	6.87	6.37
750.14	1.37	1.37	0.00	751.16	14.13	7.27	6.87
750.16	1.67	1.67	0.00	751.18	15.06	7.69	7.38
750.18	2.00	2.00	0.00	751.20	16.02	8.13	7.90
750.20	2.34	2.34	0.00	751.22	16.81	8.59	8.22
750.22	2.70	2.70	0.00	751.24	17.31	9.08	8.23
750.24	3.08	3.08	0.00	751.26	17.83	9.58	8.25
750.26	3.47	3.47	0.00	751.28	18.37	10.10	8.27
750.28	3.88	3.88	0.00	751.30	18.93	10.64	8.29
750.30	4.30	4.30	0.00	751.32	19.50	11.20	8.30
750.32	4.37	4.37	0.00	751.34	20.10	11.78	8.32
750.34	4.39	4.39	0.00	751.36	20.70	12.37	8.34
750.36	4.41	4.41	0.00	751.38	21.33	12.97	8.35
750.38	4.43	4.43	0.00	751.40	21.97	13.60	8.37
750.40	4.45	4.45	0.00	751.42	22.62	14.23	8.39
750.42	4.47	4.47	0.00	751.44	23.29	14.88	8.41
750.44	4.49	4.49	0.00	751.46	23.97	15.55	8.42
750.46	4.51	4.51	0.00	751.48	24.67	16.23	8.44
750.48	4.53	4.53	0.00	751.50	25.38	16.92	8.46
750.50	4.55	4.55	0.00				
				I			

Proposed Conditions ITPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 15

Stage-Area-Storage for Pond B-2: Bioretention B-2

		-	I		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
749.50	15,000	0	750.52	22,650	19,201
749.52	15,150	301	750.54	22,800	19,656
749.54	15,300	606	750.56	22,950	20,113
749.56	15,450	913	750.58	23,100	20,574
749.58	15,600	1,224	750.60	23,250	21,038
749.60	15,750	1,538	750.62	23,400	21,504
749.62	15,900	1,854	750.64	23,550	21,973
749.64	16,050	2,173	750.66	23,700	22,446
749.66	16,200	2,496	750.68	23,850	22,921
749.68	16,350	2,821	750.70	24,000	23,400
749.70	16,500	3,150	750.72	24,000	23,882
			750.72	24,130	24,366
749.72	16,650	3,482			
749.74	16,800	3,816	750.76	24,450	24,853
749.76	16,950	4,153	750.78	24,600	25,344
749.78	17,100	4,494	750.80	24,750	25,837
749.80	17,250	4,837	750.82	24,900	26,334
749.82	17,400	5,184	750.84	25,050	26,834
749.84	17,550	5,534	750.86	25,200	27,336
749.86	17,700	5,886	750.88	25,350	27,841
749.88	17,850	6,241	750.90	25,500	28,350
749.90	18,000	6,600	750.92	25,650	28,861
749.92	18,150	6,961	750.94	25,800	29,376
749.94	18,300	7,326	750.96	25,950	29,894
749.96	18,450	7,694	750.98	26,100	30,414
749.98	18,600	8,064	751.00	26,250	30,938
750.00	18,750	8,438	751.02	26,400	31,464
750.02	18,900	8,814	751.04	26,550	31,993
750.04	19,050	9,193	751.06	26,700	32,526
750.06	19,200	9,576	751.08	26,850	33,062
750.08	19,350	9,962	751.10	27,000	33,600
750.10	19,500	10,350	751.12	27,150	34,142
750.12	19,650	10,742	751.14	27,300	34,686
750.14	19,800	11,136	751.16	27,450	35,233
750.16	19,950	11,533	751.18	27,600	35,784
750.18	20,100	11,934	751.20	27,750	36,338
750.20	20,250	12,338	751.22	27,900	36,894
750.22	20,200	12,744	751.24	28,050	37,454
750.22	20,550	13,154	751.26	28,200	38,016
750.24	20,700	13,566	751.28	28,350	38,581
750.28	20,850	13,981	751.30	28,500	39,150
750.20			751.32	28,650	
	21,000	14,400 14,822	751.32	,	39,722
750.32	21,150	,		28,800	40,296
750.34	21,300	15,246	751.36	28,950	40,874
750.36	21,450	15,674	751.38	29,100	41,454
750.38	21,600	16,104	751.40	29,250	42,037
750.40	21,750	16,537	751.42	29,400	42,624
750.42	21,900	16,974	751.44	29,550	43,214
750.44	22,050	17,414	751.46	29,700	43,806
750.46	22,200	17,856	751.48	29,850	44,402
750.48	22,350	18,302	751.50	30,000	45,000
750.50	22,500	18,750			
			l		

Summary for Pond B-3: Bioretention B-3

Inflow Area = 5.321 ac, 76.83% Impervious, Inflow Depth = 1.25" for 1-yr event Inflow = 11.08 cfs @ 11.97 hrs, Volume= 0.553 af Outflow = 3.35 cfs @ 12.10 hrs, Volume= 0.398 af, Atten= 70%, Lag= 8.0 min Primary = 3.35 cfs @ 12.10 hrs, Volume= 0.398 af								
			Time Span= 1.00 Surf.Area= 16,7					
			nin calculated for in (893.1 - 803.8		% of inflow)			
Volume	Invert	Avail.Sto	rage Storage D	Description				
#1	750.00'		<u> </u>		tic) Listed below (R	Recalc)		
		00,00						
Elevatio	on Surf	.Area	Inc.Store	Cum.Store				
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)				
750.0	1	2,000	0					
752.00 24,000		,	36,000	36,000				
		.,	,	,				
Device	Routing	Invert	Outlet Devices					
#1	Primary	746.50'	8.0" Round C	ulvert-Primar	v			
					headwall, Ke= 0.5	500		
					/ 746.00' S= 0.01			
			n= 0.012, Flow					
#2	Device 1	750.50'			rimary C= 0.600			
			Limited to weir	flow at low he	ads			
#3	Primary	751.50'	10.0' long Sha	rp-Crested R	ectangular Weir 💈	2 End Contraction(s)		
	Primary OutFlow Max=3.35 cfs @ 12.10 hrs HW=750.80' TW=0.00' (Dynamic Tailwater)							
			rols 3.35 cfs @ 9					
T_2=Grate-Primary (Passes 3.35 cfs of 4.25 cfs potential flow)								

2=Grate-Primary (Passes 3.35 cfs of 4.25 cfs potential flow) **-3=Sharp-Crested Rectangular Weir** (Controls 0.00 cfs)

Proposed Conditions I

Stage-Discharge 752 - Primary Sharp-Crested Rectangular Weir Elevation (feet) 751 Grate-Primary 750 2 3 4 7 8 Discharge (cfs) 1 5 6 ģ 10 11 12 13 14 15 Ò Pond B-3: Bioretention B-3 Stage-Area-Storage Surface/Horizontal/Wetted Area (sq-ft) 000 10,000 12,000 14,000 16,000 2,000 4,000 6,000 8,000 18,000 20,000 22,000 24,000 0 Surface 752 Storage Elevation (feet) 751 St 750 Ó 5,000 10,000 15,000 20,000 25,000 30,000 35,000 Storage (cubic-feet)

Pond B-3: Bioretention B-3

Proposed Conditions IType II 24-Prepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond B-3: Bioretention B-3

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
750.00	0.00	750.51	0.03	751.02	3.44	751.53	3.81
750.01	0.00	750.52	0.07	751.03	3.44	751.54	3.91
750.02	0.00	750.53	0.14	751.04	3.45	751.55	4.01
750.03	0.00	750.54	0.21	751.05	3.45	751.56	4.13
750.04	0.00	750.55	0.29	751.06	3.46	751.57	4.26
750.05	0.00	750.56	0.38	751.07	3.46	751.58	4.40
750.06	0.00	750.57	0.48	751.08	3.46	751.59	4.55
750.07	0.00	750.58	0.59	751.09	3.47	751.60	4.70
750.08	0.00	750.59	0.71	751.10	3.47	751.61	4.86
750.09	0.00	750.60	0.83	751.11	3.48	751.62	5.03
750.10	0.00	750.61	0.95	751.12	3.48	751.63	5.21
750.11	0.00	750.62	1.09	751.13	3.48	751.64	5.39
750.12	0.00	750.63	1.23	751.14	3.49	751.65	5.58
750.13	0.00	750.64	1.37	751.15	3.49	751.66	5.78
750.14	0.00	750.65	1.52	751.16	3.50	751.67	5.98
750.15	0.00	750.66	1.67	751.17	3.50	751.68	6.19
750.16	0.00	750.67	1.83	751.18	3.50	751.69	6.40
750.17	0.00	750.68	2.00	751.19	3.51	751.70	6.62
750.18	0.00	750.69	2.17	751.20	3.51	751.71	6.84
750.19	0.00	750.70	2.34	751.21	3.52	751.72	7.07
750.20	0.00	750.71	2.52	751.22	3.52	751.73	7.31
750.21	0.00	750.72	2.70	751.23	3.52	751.74	7.55
750.22	0.00	750.73	2.89	751.24	3.53	751.75	7.79
750.23	0.00	750.74	3.08	751.25	3.53	751.76	8.04
750.24	0.00	750.75	3.27	751.26	3.54	751.77	8.29
750.25	0.00	750.76	3.33	751.27	3.54	751.78	8.55
750.26	0.00	750.77	3.33	751.28	3.54	751.79	8.81
750.27	0.00	750.78	3.34	751.29	3.55	751.80	9.08
750.28	0.00	750.79	3.34	751.30	3.55	751.81	9.35
750.29	0.00	750.80	3.35	751.31	3.56	751.82	9.63
750.30	0.00	750.81	3.35	751.32	3.56	751.83	9.91
750.31	0.00	750.82	3.36	751.33	3.56	751.84	10.19
750.32	0.00	750.83	3.36	751.34	3.57	751.85	10.48
750.33	0.00	750.84	3.36	751.35	3.57	751.86	10.78
750.34	0.00	750.85	3.37	751.36	3.58	751.87	11.07
750.35	0.00	750.86	3.37	751.37	3.58	751.88	11.37
750.36	0.00	750.87	3.38	751.38	3.58	751.89	11.68
750.37	0.00	750.88	3.38	751.39	3.59	751.90	11.98
750.38	0.00	750.89	3.39	751.40	3.59	751.91	12.30
750.39	0.00	750.90	3.39	751.41	3.60	751.92	12.61
750.40	0.00	750.91	3.39	751.42	3.60	751.93	12.93
750.41	0.00	750.92	3.40	751.43	3.60	751.94	13.25
750.42	0.00	750.93	3.40	751.44	3.61	751.95	13.58
750.43	0.00	750.94	3.41	751.45	3.61	751.96	13.91
750.44	0.00	750.95	3.41	751.46	3.62	751.97	14.24
750.45	0.00	750.96	3.41	751.47	3.62	751.98	14.58
750.46	0.00	750.97	3.42	751.48	3.62	751.99	14.92
750.47	0.00	750.98	3.42	751.49	3.63	752.00	15.26
750.48	0.00	750.99	3.43	751.50	3.63		
750.49	0.00	751.00	3.43	751.51	3.67		
750.50	0.00	751.01	3.43	751.52	3.73		
		l		l	I		

Proposed Conditions ITPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

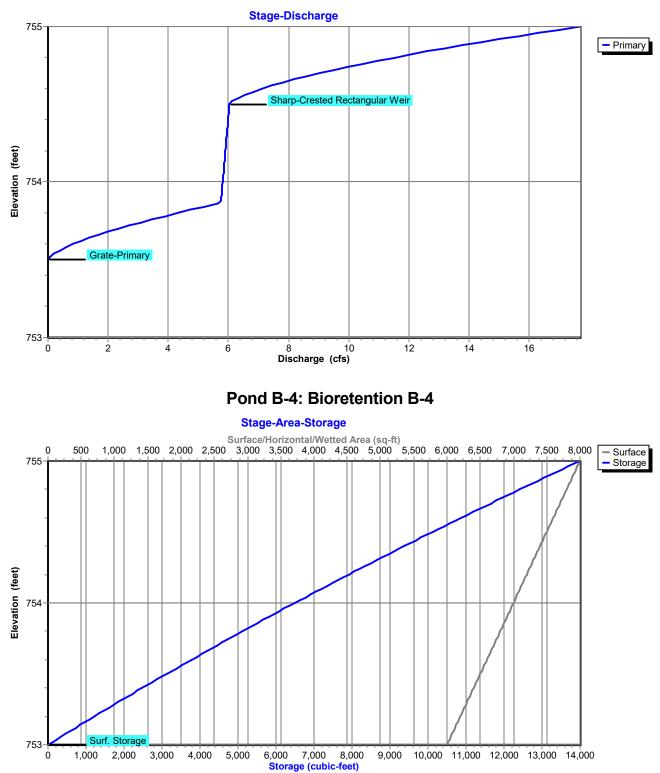
Proposed Conditions - I Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 19

Stage-Area-Storage for Pond B-3: Bioretention B-3

		•	I		•
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
750.00	12,000	0	751.02	18,120	15,361
750.02	12,120	241	751.04	18,240	15,725
750.04	12,240	485	751.06	18,360	16,091
750.06	12,360	731	751.08	18,480	16,459
750.08	12,480	979	751.10	18,600	16,830
750.10	12,600	1,230	751.12	18,720	17,203
750.12	12,720	1,483	751.14	18,840	17,579
750.14	12,840	1,739	751.16	18,960	17,957
750.16	12,960	1,997	751.18	19,080	18,337
750.18	13,080	2,257	751.20	19,200	18,720
750.20	13,200	2,520	751.20	19,320	
					19,105
750.22	13,320	2,785	751.24	19,440	19,493
750.24	13,440	3,053	751.26	19,560	19,883
750.26	13,560	3,323	751.28	19,680	20,275
750.28	13,680	3,595	751.30	19,800	20,670
750.30	13,800	3,870	751.32	19,920	21,067
750.32	13,920	4,147	751.34	20,040	21,467
750.34	14,040	4,427	751.36	20,160	21,869
750.36	14,160	4,709	751.38	20,280	22,273
750.38	14,280	4,993	751.40	20,400	22,680
750.40	14,400	5,280	751.42	20,520	23,089
750.42	14,520	5,569	751.44	20,640	23,501
750.44	14,640	5,861	751.46	20,760	23,915
750.46	14,760	6,155	751.48	20,880	24,331
750.48	14,880	6,451	751.50	21,000	24,750
750.50	15,000	6,750	751.52	21,120	25,171
750.52	15,120	7,051	751.54	21,240	25,595
750.54	15,240	7,355	751.56	21,360	26,021
750.56	15,360	7,661	751.58	21,480	26,449
750.58	15,480	7,969	751.60	21,600	26,880
750.60	15,600	8,280	751.62	21,720	27,313
750.62	15,720	8,593	751.64	21,840	27,749
750.64	15,840	8,909	751.66	21,960	28,187
750.66	15,960	9,227	751.68	22,080	28,627
750.68	16,080	9,547	751.70	22,200	29,070
750.70	16,200	9,870	751.72	22,320	29,515
750.72	16,320	10,195	751.74	22,440	29,963
750.74	16,440	10,523	751.76	22,560	30,413
750.76	16,560	10,853	751.78	22,680	30,865
750.78	16,680	11,185	751.80	22,800	31,320
750.80	16,800	11,520	751.82	22,920	31,777
750.80	16,920		751.82	23,040	32,237
		11,857			
750.84	17,040	12,197	751.86	23,160	32,699
750.86	17,160	12,539	751.88	23,280	33,163
750.88	17,280	12,883	751.90	23,400	33,630
750.90	17,400	13,230	751.92	23,520	34,099
750.92	17,520	13,579	751.94	23,640	34,571
750.94	17,640	13,931	751.96	23,760	35,045
750.96	17,760	14,285	751.98	23,880	35,521
750.98	17,880	14,641	752.00	24,000	36,000
751.00	18,000	15,000			
			l		

Summary for Pond B-4: Bioretention B-4

Proposed Conditions - I


Printed 9/29/2022

Page 20

Inflow = 5.36 Outflow = 3.34	= 5.36 cfs @ 11.97 hrs, Volume= 0.267 af = 3.34 cfs @ 12.05 hrs, Volume= 0.196 af, Atten= 38%, Lag= 5.2 min				
		= 1.00-80.00 hrs, dt= 0.05 hrs 6,753 sf Storage= 4,804 cf			
Plug-Flow detention time Center-of-Mass det. time		ed for 0.196 af (73% of inflow) 803.8)			
Volume Invert	Avail.Storage Stora	age Description			
#1 753.00'	14,000 cf Surf	. Storage (Prismatic) Listed below (Recalc)			
Elevation Surf.A					
(feet) (so	q-ft) (cubic-feet)) (cubic-feet)			
753.00 6,0	000 0) 0			
755.00 8,0	000 14,000) 14,000			
Device Routing	Invert Outlet Dev	vices			
#1 Primary	749.50' 12.0" Ro	und Culvert-Primary			
		CPP, square edge headwall, Ke= 0.500			
		let Invert= 749.50' / 746.50' S= 0.0130 '/' Cc= 0.900			
		Flow Area= 0.79 sf			
#2 Device 1		I.0" Horiz. Grate-Primary C= 0.600			
		weir flow at low heads			
#3 Primary	754.50' 10.0' long	Sharp-Crested Rectangular Weir 2 End Contraction(s)			
1=Culvert-Primary (

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Conditions I Prepared by Pinewoods Engineering, P.C.

Pond B-4: Bioretention B-4

Proposed Conditions IType II 2Prepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond B-4: Bioretention B-4

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
753.00	0.00	753.51	0.03	754.02	5.82	754.53	6.21
753.01	0.00	753.52	0.07	754.03	5.82	754.54	6.31
753.02	0.00	753.53	0.14	754.04	5.83	754.55	6.41
753.03	0.00	753.54	0.21	754.05	5.83	754.56	6.53
753.04	0.00	753.55	0.29	754.06	5.84	754.57	6.66
753.05	0.00	753.56	0.38	754.07	5.84	754.58	6.80
753.06	0.00	753.57	0.48	754.08	5.84	754.59	6.95
753.07	0.00	753.58	0.59	754.09	5.85	754.60	7.10
753.08	0.00	753.59	0.71	754.10	5.85	754.61	7.27
753.09	0.00	753.60	0.83	754.11	5.86	754.62	7.44
753.10	0.00	753.61	0.95	754.12	5.86	754.63	7.61
753.11	0.00	753.62	1.09	754.13	5.87	754.64	7.80
753.12	0.00	753.63	1.23	754.14	5.87	754.65	7.99
753.13	0.00	753.64	1.37	754.15	5.88	754.66	8.18
753.14	0.00	753.65	1.52	754.16	5.88	754.67	8.38
753.15	0.00	753.66	1.67	754.17	5.88	754.68	8.59
753.16	0.00	753.67	1.83	754.18	5.89	754.69	8.81
753.17	0.00	753.68	2.00	754.19	5.89	754.70	9.03
753.18	0.00	753.69	2.17	754.20	5.90	754.71	9.25
753.19	0.00	753.70	2.34	754.21	5.90	754.72	9.48
753.20	0.00	753.71	2.52	754.22	5.91	754.73	9.72
753.21	0.00	753.72	2.70	754.23	5.91	754.74	9.96
753.22	0.00	753.73	2.89	754.24	5.91	754.75	10.20
753.23	0.00	753.74	3.08	754.25	5.92	754.76	10.45
753.24	0.00	753.75	3.27	754.26	5.92	754.77	10.71
753.25	0.00	753.76	3.47	754.27	5.93	754.78	10.96
753.26	0.00	753.77	3.67	754.28	5.93	754.79	11.23
753.27	0.00	753.78	3.88	754.29	5.94	754.80	11.50
753.28	0.00	753.79	4.09	754.30	5.94	754.81	11.77
753.29	0.00	753.80	4.30	754.31	5.95	754.82	12.05
753.30	0.00	753.81	4.52	754.32	5.95	754.83	12.33
753.31	0.00	753.82	4.74	754.33	5.95	754.84	12.61
753.32	0.00	753.83	4.96	754.34	5.96	754.85	12.90
753.33	0.00	753.84	5.19	754.35	5.96	754.86	13.19
753.34	0.00	753.85	5.42	754.36	5.97	754.87	13.49
753.35	0.00	753.86	5.65	754.37	5.97	754.88	13.79
753.36	0.00	753.87	5.75	754.38	5.98	754.89	14.10
753.37	0.00	753.88	5.75	754.39	5.98	754.90	14.40
753.38	0.00	753.89	5.76	754.40	5.98	754.91	14.72
753.39	0.00	753.90	5.76	754.41	5.99	754.92	15.03
753.40	0.00	753.91	5.77	754.42	5.99	754.93	15.35
753.41	0.00	753.92	5.77	754.43	6.00	754.94	15.67
753.42	0.00	753.93	5.78	754.44	6.00	754.95	16.00
753.43	0.00	753.94	5.78	754.45	6.01	754.96	16.33
753.44	0.00	753.95	5.79	754.46	6.01	754.97	16.66
753.45	0.00	753.96	5.79	754.47	6.01	754.98	17.00
753.46	0.00	753.97	5.80	754.48	6.02	754.99	17.34
753.47	0.00	753.98	5.80	754.49	6.02	755.00	17.68
753.48	0.00	753.99	5.80	754.50	6.03		
753.49	0.00	754.00	5.81	754.51	6.06		
753.50	0.00	754.01	5.81	754.52	6.13		
		I			l		

Proposed Conditions ITPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-4: Bioretention B-4

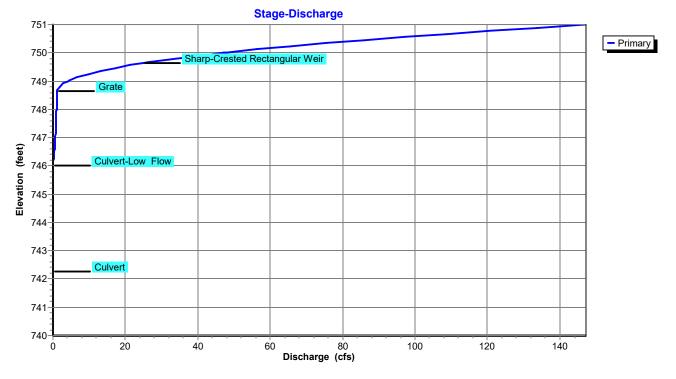
Flavation	Curfees	Characte	Flavation	Curford	Characte
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	<u>(sq-ft)</u>	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
753.00	6,000	0	754.02	7,020	6,640
753.02	6,020	120	754.04	7,040	6,781
753.04	6,040	241	754.06	7,060	6,922
753.06	6,060	362	754.08	7,080	7,063
753.08	6,080	483	754.10	7,100	7,205
753.10	6,100	605	754.12	7,120	7,347
753.12	6,120	727	754.14	7,140	7,490
753.14	6,140	850	754.16	7,160	7,633
753.16	6,160	973	754.18	7,180	7,776
753.18	6,180	1,096	754.20	7,200	7,920
753.20	6,200	1,220	754.22	7,220	8,064
753.22	6,220	1,344	754.24	7,240	8,209
753.24	6,240	1,469	754.26	7,260	8,354
753.26	6,260	1,594	754.28	7,280	8,499
753.28	6,280	1,719	754.30	7,300	8,645
753.30	6,300	1,845	754.32	7,320	8,791
753.32	6,320	1,971	754.34	7,340	8,938
753.34	6,340	2,098	754.36	7,360	9,085
753.36	6,360	2,225	754.38	7,380	9,232
753.38	6,380	2,352	754.40	7,400	9,380
753.40	6,400	2,480	754.42	7,420	9,528
753.42	6,420	2,608	754.44	7,440	9,677
753.44	6,440	2,737	754.46	7,460	9,826
753.46	6,460	2,866	754.48	7,480	9,975
753.48	6,480	2,995	754.50	7,500	10,125
753.50	6,500	3,125	754.52	7,520	10,275
753.52	6,520	3,255	754.54	7,540	10,426
753.54	6,540	3,386	754.56	7,560	10,577
753.56	6,560	3,517	754.58	7,580	10,728
753.58	6,580	3,648	754.60	7,600	10,880
753.60	6,600	3,780	754.62	7,620	11,032
753.62	6,620	3,912	754.64	7,640	11,185
753.64	6,640	4,045	754.66	7,660	11,338
753.66	6,660	4,178	754.68	7,680	11,491
753.68	6,680	4,178	754.70	7,700	11,645
753.70	6,700	4,445	754.70	7,720	11,799
753.72	6,720	4,579	754.72	7,740	11,954
753.72	6,740	4,579	754.76	7,760	12,109
	,	4,849			
753.76	6,760		754.78 754.80	7,780	12,264
753.78	6,780	4,984		7,800	12,420
753.80	6,800	5,120	754.82	7,820	12,576
753.82	6,820	5,256	754.84	7,840	12,733
753.84	6,840	5,393	754.86	7,860	12,890
753.86	6,860	5,530	754.88	7,880	13,047
753.88	6,880	5,667	754.90	7,900	13,205
753.90	6,900	5,805	754.92	7,920	13,363
753.92	6,920	5,943	754.94	7,940	13,522
753.94	6,940	6,082	754.96	7,960	13,681
753.96	6,960	6,221	754.98	7,980	13,840
753.98	6,980	6,360	755.00	8,000	14,000
754.00	7,000	6,500			

Summary for Pond P-1: Wet Pond P-1

Inflow Area =	22.268 ac, 71.72% Impervious,	Inflow Depth = 0.96" for 1-yr event
Inflow =	23.50 cfs @ 11.99 hrs, Volume=	= 1.789 af
Outflow =	1.15 cfs @ 15.14 hrs, Volume=	= 1.781 af, Atten= 95%, Lag= 188.9 min
Primary =	1.15 cfs @ 15.14 hrs, Volume=	= 1.781 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 748.63' @ 15.14 hrs Surf.Area= 38,048 sf Storage= 43,568 cf

Plug-Flow detention time= 497.9 min calculated for 1.781 af (100% of inflow) Center-of-Mass det. time= 494.4 min (1,350.8 - 856.4)


Volume	Inver	t Avai	I.Storage	Storage Description	on		
#1	740.00)'	0 cf	Retention (Irregu		(Recalc)	
#2	746.00)' 1 <i>'</i>	33,484 cf	24,499 cf Overall Detention (Irregu		(Recalc)	
<u></u>	740.00		33,484 cf	Total Available St		(Needle)	
			55,404 01		orage		
Elevatio	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
740.00	0	651	103.0	0	0	651	
741.50	0	2,244	1,016.0	2,052	2,052	81,955	
745.00	0	4,383	391.0	11,390	13,442	151,977	
746.50	0	10,839	632.0	11,057	24,499	171,611	
Elevatio	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
746.00	1	11,459	563.0	0	0	11,459	
747.00		13,760	587.0	12,592	12,592	13,729	
748.00	0	19,120	930.0	16,367	28,959	55,143	
749.00	0	32,528	1,810.0	25,529	54,488	247,025	
750.00	0	39,522	1,836.0	35,968	90,456	254,786	
751.00	0	46,632	1,863.0	43,028	133,484	262,946	
Device	Routing	In	vert Outl	et Devices			
	Primary	742		" Round Culvert			
"	1 minuty	174		35.0' CPP, square	edge headwall	(e= 0.500	
						= 0.0019 '/' Cc= 0.900	
				0.012, Flow Area=			
#2	Device 1	748		" W x 30.0" H 9° G			
				ted to weir flow at l	ow heads		
#3	Primary	749	.65' 20.0	' long Sharp-Crest	ted Rectangular \	Neir 2 End Contraction(s	;)
#4	Device 1	746		Round Culvert-Lo		· ·	,
			L= 1	5.0' CPP, projecti	ing, no headwall,	Ke= 0.900	
						= -0.0333 '/' Cc= 0.900	
			n= (0.012, Flow Area=	0.20 sf		

Primary OutFlow Max=1.15 cfs @ 15.14 hrs HW=748.63' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 1.15 cfs of 53.55 cfs potential flow) **2=Grate** (Controls 0.00 cfs) **1=Culvert** (Passes 1.15 cfs of 53.55 cfs potential flow)

4=Culvert-Low Flow (Inlet Controls 1.15 cfs @ 5.87 fps)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond P-1: Wet Pond P-1

Proposed Conditions I

Stage-Area-Storage 751 Storage 750 749 748 747 Elevation (feet) Detention 746 745 744 743 742 741 740ntion 20,000 40,000 60,000 80,000 100,000 120,000 Ò Storage (cubic-feet)

Pond P-1: Wet Pond P-1

Proposed Conditions IType II 24-JPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond P-1: Wet Pond P-1

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
740.00	0.00	743.06	0.00	746.12	0.03	749.18	7.99
740.06	0.00	743.12	0.00	746.18	0.07	749.24	9.69
740.12	0.00	743.18	0.00	746.24	0.12	749.30	11.54
740.18	0.00	743.24	0.00	746.30	0.18	749.36	13.52
740.24	0.00	743.30	0.00	746.36	0.24	749.42	15.63
740.30	0.00	743.36	0.00	746.42	0.31	749.48	17.85
740.36	0.00	743.42	0.00	746.48	0.36	749.54	20.19
740.42	0.00	743.48	0.00	746.54	0.40	749.60	22.63
740.48	0.00	743.54	0.00	746.60	0.44	749.66	25.23
740.54	0.00	743.60	0.00	746.66	0.48	749.72	29.02
740.60	0.00	743.66	0.00	746.72	0.51	749.78	33.50
740.66	0.00	743.72	0.00	746.78	0.54	749.84	36.78
740.72	0.00	743.78	0.00	746.84	0.57	749.90	40.44
740.78	0.00	743.84	0.00	746.90	0.60	749.96	44.42
740.84	0.00	743.90	0.00	746.96	0.63	750.02	48.69
740.90	0.00	743.96	0.00	747.02	0.65	750.08	53.22
740.96	0.00	744.02	0.00	747.08	0.68	750.14	58.00
741.02	0.00	744.08	0.00	747.14	0.70	750.20	63.01
741.08	0.00	744.14	0.00	747.20	0.73	750.26	68.22
741.14	0.00	744.20	0.00	747.26	0.75	750.32	73.65
741.20	0.00	744.26	0.00	747.32	0.77	750.38	79.26
741.26	0.00	744.32	0.00	747.38	0.79	750.44	85.06
741.32	0.00	744.38	0.00	747.44	0.81	750.50	91.04
741.38	0.00	744.44	0.00	747.50	0.83	750.56	97.19
741.44	0.00	744.50	0.00	747.56	0.85	750.62	103.50
741.50	0.00	744.56	0.00	747.62	0.87	750.68	109.97
741.56	0.00	744.62	0.00	747.68	0.89	750.74	116.60
741.62	0.00	744.68	0.00	747.74	0.91	750.80	123.37
741.68	0.00	744.74	0.00	747.80	0.93	750.86	130.29
741.74	0.00	744.80	0.00	747.86	0.95	750.92	137.35
741.80	0.00	744.86	0.00	747.92	0.96	750.98	144.55
741.86	0.00	744.92	0.00	747.98	0.98		
741.92	0.00	744.98	0.00	748.04	1.00		
741.98	0.00	745.04	0.00	748.10	1.02		
742.04	0.00	745.10	0.00	748.16	1.03		
742.10	0.00	745.16	0.00	748.22	1.05		
742.16	0.00	745.22	0.00	748.28	1.06		
742.22	0.00	745.28	0.00	748.34	1.08		
742.28	0.00	745.34	0.00	748.40	1.09		
742.34	0.00	745.40	0.00	748.46	1.11		
742.40	0.00	745.46	0.00	748.52	1.12		
742.46	0.00	745.52	0.00	748.58	1.14		
742.52	0.00	745.58	0.00	748.64	1.15		
742.58	0.00	745.64	0.00	748.70	1.27		
742.64	0.00	745.70	0.00	748.76	1.54		
742.70	0.00	745.76	0.00	748.82	1.95		
742.76	0.00	745.82	0.00	748.88	2.51		
742.82	0.00	745.88	0.00	748.94	3.21		
742.88	0.00	745.94	0.00	749.00	4.07		
742.94	0.00	746.00	0.00	749.06	5.12		
743.00	0.00	746.06	0.01	749.12	6.46		
		I			I		

Proposed Conditions IType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond P-1: Wet Pond P-1

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
740.00	0	747.65	22,616
740.15	0	747.80	25,249
740.30	0	747.95	28,010
740.45	0	748.10	30,929
740.60	0	748.25	34,112
740.75	0	748.40	37,575
740.90 741.05	0 0	748.55 748.70	41,333 45,396
741.20	0	748.85	49,777
741.35	0	749.00	54,488
741.50	0	749.15	59,442
741.65	ů 0	749.30	64,548
741.80	0 0	749.45	69,809
741.95	0	749.60	75,227
742.10	0	749.75	80,803
742.25	0	749.90	86,540
742.40	0	750.05	92,440
742.55	0	750.20	98,497
742.70	0	750.35	104,710
742.85	0	750.50	111,081
743.00	0	750.65	117,612
743.15	0	750.80	124,305
743.30	0	750.95	131,161
743.45	0 0		
743.60 743.75	0		
743.90	0		
744.05	0		
744.20	Ő		
744.35	0		
744.50	0		
744.65	0		
744.80	0		
744.95	0		
745.10	0		
745.25	0		
745.40	0		
745.55	0		
745.70	0 0		
745.85 746.00	0		
746.00	1,744		
746.30	3,537		
746.45	5,382		
746.60	7,278		
746.75	9,227		
746.90	11,228		
747.05	13,286		
747.20	15,444		
747.35	17,716		
747.50	20,105		
		l	

Summary for Link 1AT: DA #1A Total

Inflow Are	a =	56.205 ac, 63.22% Impervious, Inflow Depth = 0.92" for 1-yr event
Inflow	=	24.42 cfs @ 12.26 hrs, Volume= 4.321 af
Primary	=	24.42 cfs @ 12.26 hrs, Volume= 4.321 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-1: DP #1 - Rush Crk Trib.

Inflow Are	a =	56.205 ac, 63.22% Impervious, Inflow Depth = 0.92" for 1-yr event
Inflow	=	24.42 cfs @ 12.26 hrs, Volume= 4.321 af
Primary	=	24.42 cfs @ 12.26 hrs, Volume= 4.321 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP #2 - Smokes Crk

 Inflow Area =
 83.814 ac, 88.53% Impervious, Inflow Depth =
 1.42" for 1-yr event

 Inflow =
 101.88 cfs @
 12.00 hrs, Volume=
 9.921 af

 Primary =
 101.88 cfs @
 12.00 hrs, Volume=
 9.921 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

1-yr Primary Outflow Imported from Proposed Conditions II~Link DP-2.hce

Summary for Link DP-3: DP #3 - Rush Crk

Inflow Are	a =	55.981 ac, 45.79% Impervious, Inflow Depth > 0.82" for 1-yr event
Inflow	=	21.61 cfs @ 12.36 hrs, Volume= 3.817 af
Primary	=	21.61 cfs @ 12.36 hrs, Volume= 3.817 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

1-yr Primary Outflow Imported from Proposed Conditions III~Link DP-3.hce

Summary for Link PT: Proposed Conditions Total Offsite

Inflow Are	a =	196.000 ac, 69.06% Impervious, Inflow Depth > 1.11" for 1-yr event
Inflow	=	125.79 cfs @ 12.18 hrs, Volume= 18.060 af
Primary	=	125.79 cfs @ 12.18 hrs, Volume= 18.060 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 1A-I: DA #1A-I

Runoff = 43.22 cfs @ 12.27 hrs, Volume= 4.419 af, Depth= 2.04"

Ar	ea (ad	c) C	N Des	cription		
	0.00	0 7	′4 >75°	% Grass co	over, Good	, HSG C
	11.55	8 8	0 >75 [°]	% Grass co	over, Good	, HSG D
	0.00	0 9	8 Pave	ed parking	, HSG C	
	13.44	2 9	8 Pave	ed parking	, HSG D	
	0.00	0 9	6 Grav	el surface	, HSG C	
	0.00	0 9	6 Grav	el surface	, HSG D	
	1.04	4 7	'7 Woo	ds, Good,	HSG D	
	26.04	4 8	9 Wei	ghted Aver	age	
	12.60	2	48.3	9% Pervio	us Area	
	13.44	2	51.6	1% Imperv	/ious Area	
		ength	Slope	Velocity	Capacity	Description
(mi	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
26	6.7	150	0.0150	0.09		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.20"
2	2.9	340	0.0150	1.97		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
C).4	75	0.0200	2.87		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
2	2.8	760		4.50		Direct Entry, Pipe Flow
32	2.8	1,325	Total			

Summary for Subcatchment 1A-II: DA #1A-II

Runoff = 38.25 cfs @ 11.97 hrs, Volume= 1.942 af, Depth= 2.30"

 Area	(ac)	CN I	Desc	cription		
0.	000	74 :	>759	% Grass co	over, Good	, HSG C
2.	746	80 3	>75%	% Grass co	over, Good	, HSG D
0.	000			ed parking		
	783			ed parking		
0.	000			el surface/	,	
0.	000			el surface	,	
 0.	587	77 \	Woo	ods, Good,	HSG D	
10.	116	92	Weię	ghted Aver	rage	
-	333		32.9	5% Pervio	us Area	
6.	783	(67.0	5% Imper	∕ious Area	
-		0			0	
ŢĊ	Length		ope	Velocity	Capacity	Description
 (min)	(feet		t/ft)	(ft/sec)	(cfs)	
1.6	100	0.01	170	1.07		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
0.9	140	0.01	170	2.65		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
 2.3	630			4.50		Direct Entry, Pipe Flow
4.8	870) Tota	al, li	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 1A-III: DA #1A-III

Runoff = 22.14 cfs @ 11.96 hrs, Volume= 1.169 af, Depth= 2.60"

Area	(ac)	CN	Desc	ription		
0.	000	74	>75%	6 Grass co	over, Good,	HSG C
0.	883	80	>75%	6 Grass co	over, Good,	HSG D
0.	000	98	Pave	d parking,	HSG C	
4.	519	98	Pave	d parking,	HSG D	
0.	000	96	Grav	el surface	, HSG C	
0.	000	96	Grav	el surface	, HSG D	
5.	402	95	Weig	hted Aver	age	
0.	883		16.35	5% Pervio	us Area	
4.	519		83.65	5% Imperv	vious Area	
Тс	Length		lope	Velocity	Capacity	Description
(min)	(feet)) (1	ft/ft)	(ft/sec)	(cfs)	
1.6	100	0.0	170	1.07		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.3	205	5 O.O)170	2.65		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
2.9	305	5 Tot	tal, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 1A-IV: DA #1A-IV

Runoff = 25.52 cfs @ 11.97 hrs, Volume= 1.296 af, Depth= 2.30"

Area ((ac) C	N Des	cription		
0.	000 7	74 >75	% Grass c	over, Good	, HSG C
2.	082 8	30 >759	% Grass c	over, Good	, HSG D
0.	000 9		ed parking	,	
			ed parking		
			/el surface	,	
0.	000 9	96 Grav	/el surface	, HSG D	
			ghted Avei	0	
	082		4% Pervio		
4.	668	69.1	6% Imperv	/ious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.6	100	0.0170	1.07		Sheet Flow,
0.7	110	0.0170	2.65		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps
2.4	360		2.50		Direct Entry,
4.7	570	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 1A-V: DA #1A-V

Runoff = 21.28 cfs @ 11.96 hrs, Volume= 1.106 af, Depth= 2.50"

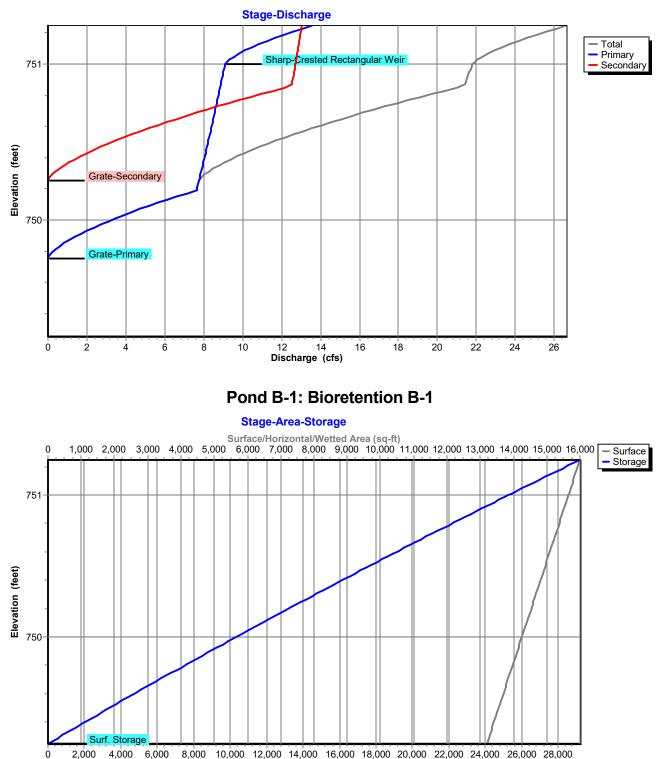
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Area	(ac)	CN	Desc	ription							
0.000 98 Paved parking, HSG C 4.088 98 Paved parking, HSG D 0.000 96 Gravel surface, HSG C 0.000 96 Gravel surface, HSG D 5.321 94 Weighted Average 1.233 23.17% Pervious Area 4.088 76.83% Impervious Area 4.088 76.83% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Flow 1.3 200 2.50 Direct Entry, Swale Flow	0	.000	74	>75%	75% Grass cover, Good, HSG C							
4.088 98 Paved parking, HSG D 0.000 96 Gravel surface, HSG D 5.321 94 Weighted Average 1.233 23.17% Pervious Area 4.088 76.83% Impervious Area 4.088 76.83% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50	1	.233	80	>75%	6 Grass co	over, Good	, HSG D					
0.000 96 Gravel surface, HSG C 0.000 96 Gravel surface, HSG D 5.321 94 Weighted Average 1.233 23.17% Pervious Area 4.088 76.83% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	0	.000	98									
0.000 96 Gravel surface, HSG D 5.321 94 Weighted Average 1.233 23.17% Pervious Area 4.088 76.83% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	4	.088	98									
5.32194Weighted Average1.23323.17% Pervious Area4.08876.83% Impervious AreaTcLengthSlopeVelocityCapacity(min)(feet)(ft/ft)(ft/sec)(cfs)1.61000.01701.07Sheet Flow, Smooth surfaces n= 0.0111.42250.01702.65Shallow Concentrated Flow, Paved1.32002.50Direct Entry, Swale Flow												
1.233 4.08823.17% Pervious AreaTcLengthSlopeVelocityCapacity (ft/ft)Description(min)(feet)(ft/ft)(ft/sec)(cfs)1.61000.01701.07Sheet Flow, Smooth surfaces n= 0.011P2= 2.20"1.42250.01702.65Shallow Concentrated Flow, PavedFlow, Paved1.32002.50Direct Entry, Swale Flow	0	.000	96	Grav	el surface	, HSG D						
4.08876.83% Impervious AreaTcLengthSlopeVelocityCapacity (cfs)Description(min)(feet)(ft/ft)(ft/sec)(cfs)1.61000.01701.07Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20"1.42250.01702.65Shallow Concentrated Flow, Paved Kv= 20.3 fps1.32002.50Direct Entry, Swale Flow	5	.321	94	Weig	ghted Aver	age						
TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)Description1.61000.01701.07Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20"1.42250.01702.65Shallow Concentrated Flow, Paved Kv= 20.3 fps1.32002.50Direct Entry, Swale Flow	1	.233		23.1	7% Pervio	us Area						
(min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	4	.088		76.8	3% Imperv	vious Area						
(min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	_					- ··						
1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow					,		Description					
1.4 225 0.0170 2.65 Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)						
1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	1.6	10	0 0	.0170	1.07		Sheet Flow,					
Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow							Smooth surfaces n= 0.011 P2= 2.20"					
1.3 200 2.50 Direct Entry, Swale Flow	1.4	22	5 0	.0170	2.65		•					
4.3 525 Total, Increased to minimum Tc = 6.0 min	1.3	20										
	4.3	52	5 T	otal, Ir	ncreased t	o minimum	1 Tc = 6.0 min					

Summary for Subcatchment 1A-VI: DA #1A-V

Runoff = 10.29 cfs @ 11.96 hrs, Volume= 0.535 af, Depth= 2.50"

Area (a	ac) C	N Dese	cription		
0.0	000 7	′4 >75°	% Grass co	over, Good	, HSG C
0.5	542 8	30 >75 ^o	% Grass co	over, Good	, HSG D
0.0	000 9		ed parking	,	
2.0)30 9		ed parking		
			el surface	,	
0.0	000 9	6 Grav	el surface	, HSG D	
2.5	572 9	4 Wei	ghted Aver	age	
	542	=	7% Pervio		
2.0)30	78.9	3% Imper	/ious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.5	100	0.0200	1.14		Sheet Flow,
2.0	350	0.0200	2.87		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps
1.3	200		2.50		Direct Entry, Swale Flow
4.8	650	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Pond B-1: Bioretention B-1


Inflow Outflow Primary	Outflow = 11.95 cfs @ 12.05 hrs, Volume= 1.013 af, Atten= 46%, Lag= 5.0 min									
	Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 750.56' @ 12.06 hrs Surf.Area= 15,038 sf Storage= 18,536 cf									
			nin calculated fo in (839.8 - 778. ⁻		7% of inflo	N)				
Volume	Invert	Avail.Sto	rage Storage [Description						
#1	749.25'		00 cf Surf. Sto		atic) Listed	below (Recalc)				
Elevatio (fee	on Surf. <i>i</i>		Inc.Store (cubic-feet)	Cum.Stor (cubic-fee	re	(, ,				
749.2	/	,200	0		0					
751.2		,000	29,200	29,20	-					
101.2		,000	20,200	20,20						
Device	Routing	Invert	Outlet Devices							
#1	Primary	747.25'	15.0" Round	Culvert-Prin	nary					
	•		L= 87.0' CPP							
						S= 0.0029 '/' Cc= 0.900				
			n= 0.012, Flov							
#2	Device 1	749.75'	24.0" x 24.0" H			C= 0.600				
			Limited to weir							
#3	Primary	751.00'				ar Weir 2 End Contraction(s)				
#4	Secondary	745.75'	15.0" Round							
			L= 45.0' CPP							
						S= 0.0360 '/' Cc= 0.900				
#5	Davias 1	750 25'	n= 0.012, Flov			C = 0 600				
#5	Device 4	750.25'	24.0" x 24.0" H Limited to weir			V = 0.600				
				now at low I	ieaus					
1=Cu	Primary OutFlow Max=7.52 cfs @ 11.97 hrs HW=750.42' TW=748.54' (Dynamic Tailwater) 1=Culvert-Primary (Outlet Controls 7.52 cfs @ 6.13 fps) 2=Grate-Primary (Passes 7.52 cfs of 14.33 cfs potential flow) 3=Sharp-Created Pactangular Wair (Controls 0.00 cfs)									

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=4.41 cfs @ 12.06 hrs HW=750.56' TW=0.00' (Dynamic Tailwater) 4=Culvert-Secondary (Passes 4.41 cfs of 12.08 cfs potential flow) 5=Grate-Secondary (Weir Controls 4.41 cfs @ 1.81 fps)

Proposed Conditions I

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Storage (cubic-feet)

Pond B-1: Bioretention B-1

Proposed Conditions ITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond B-1: Bioretention B-1

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
749.25	0.00	0.00	0.00	750.27	7.86	7.79	0.07
749.27	0.00	0.00	0.00	750.29	8.04	7.83	0.21
749.29	0.00	0.00	0.00	750.31	8.25	7.87	0.38
749.31	0.00	0.00	0.00	750.33	8.50	7.90	0.59
749.33	0.00	0.00	0.00	750.35	8.77	7.94	0.83
749.35	0.00	0.00	0.00	750.37	9.07	7.98	1.09
749.37	0.00	0.00	0.00	750.39	9.39	8.02	1.37
749.39	0.00	0.00	0.00	750.41	9.73	8.06	1.67
749.41	0.00	0.00	0.00	750.43	10.09	8.09	2.00
749.43	0.00	0.00	0.00	750.45	10.47	8.13	2.34
749.45	0.00	0.00	0.00	750.47	10.87	8.17	2.70
749.47	0.00	0.00	0.00	750.49	11.28	8.20	3.08
749.49	0.00	0.00	0.00	750.51	11.71	8.24	3.47
749.51	0.00	0.00	0.00	750.53	12.15	8.28	3.88
749.53	0.00	0.00	0.00	750.55	12.61	8.31	4.30
749.55	0.00	0.00	0.00	750.57	13.08	8.35	4.74
749.57	0.00	0.00	0.00	750.59	13.57	8.38	5.19
749.59	0.00	0.00	0.00	750.61	14.07	8.42	5.65
749.61	0.00	0.00	0.00	750.63	14.58	8.46	6.13
749.63	0.00	0.00	0.00	750.65	15.11	8.49	6.62
749.65	0.00	0.00	0.00	750.67	15.65	8.53	7.12
749.67	0.00	0.00	0.00	750.69	16.20	8.56	7.64
749.69	0.00	0.00	0.00	750.71	16.76	8.60	8.16
749.71	0.00	0.00	0.00	750.73	17.33	8.63	8.70
749.73	0.00	0.00	0.00	750.75	17.91	8.67	9.25
749.75	0.00	0.00	0.00	750.77	18.51	8.70	9.81
749.77	0.07	0.00	0.00	750.79	19.12	8.73	10.38
749.79	0.21	0.21	0.00	750.81	19.73	8.77	10.96
749.81	0.38	0.38	0.00	750.83	20.36	8.80	11.56
749.83	0.59	0.59	0.00	750.85	21.00	8.84	12.16
749.85	0.83	0.83	0.00	750.87	21.40	8.87	12.10
749.87	1.09	1.09	0.00	750.89	21.46	8.91	12.56
749.89	1.37	1.37	0.00	750.91	21.52	8.94	12.58
749.91	1.67	1.67	0.00	750.93	21.58	8.97	12.61
749.93	2.00	2.00	0.00	750.95	21.64	9.01	12.64
749.95	2.34	2.34	0.00	750.97	21.71	9.04	12.67
749.97	2.70	2.70	0.00	750.99	21.77	9.07	12.69
749.99	3.08	3.08	0.00	751.01	21.86	9.14	12.72
750.01	3.47	3.47	0.00	751.03	22.06	9.31	12.75
750.03	3.88	3.88	0.00	751.05	22.31	9.54	12.78
750.05	4.30	4.30	0.00	751.07	22.61	9.81	12.80
750.07	4.74	4.74	0.00	751.09	22.95	10.12	12.83
750.09	5.19	5.19	0.00	751.11	23.32	10.46	12.86
750.11	5.65	5.65	0.00	751.13	23.71	10.83	12.88
750.13	6.13	6.13	0.00	751.15	24.14	11.23	12.91
750.15	6.62	6.62	0.00	751.17	24.59	11.65	12.94
750.17	7.12	7.12	0.00	751.19	25.06	12.10	12.97
750.19	7.63	7.63	0.00	751.21	25.56	12.56	12.99
750.21	7.67	7.67	0.00	751.23	26.07	13.05	13.02
750.23	7.71	7.71	0.00	751.25	26.61	13.56	13.05
750.25	7.75	7.75	0.00				
-		-					

Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-1: Bioretention B-1

		0 (01		0 (01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
749.2713.228264750.2914.65614.485749.2913.256529750.3114.68414.779749.3113.284795750.3314.71215.072749.3313.3121.060750.3514.74015.367749.3513.3401.327750.3714.76815.662749.3713.3681.862750.4114.82416.251749.4313.4242.130750.4314.88216.551749.4313.4422.399750.4514.88017.146749.4713.5082.938750.4914.93617.444749.4913.5643.479750.5314.99218.043749.5513.6624.023750.5715.02018.343749.5513.6624.023750.5715.02018.943749.5513.6764.569750.6115.10419.247749.6313.7325.117750.6515.16019.822749.6513.7605.392750.6715.18820.155749.6713.7885.667750.7515.30021.375749.7513.8006.775750.7715.32821.681749.6913.8165.944750.7515.30021.375749.7513.9006.775750.7715.32821.681749.6913.8726.497750.7515.30021.375749.7513.9006.775750.7715.3662						
749.2913.266529750.3114.68414.779749.3113.3121,060750.3514.74015.367749.3313.3401,327750.3714.76815.662749.3513.3661,862750.4114.82416.598749.3913.3661,862750.4114.82416.551749.3913.3661,862750.4314.85216.551749.4113.4242,130750.4514.88016.848749.4313.4522,399750.4514.88016.848749.4513.4602,668750.4714.90817.444749.4913.5363.208750.5114.99218.043749.5113.5643.479750.5515.02018.343749.5313.5223.751750.5515.02018.343749.5513.6204.023750.6715.04818.945749.6113.7044.843750.6115.13219.249749.6313.7225.117750.6515.16019.852749.6513.7605.392750.6715.18820.155749.6713.7865.667750.6915.21620.460749.6913.8165.944750.7115.22420.764749.6113.7906.775750.7715.30021.375749.7313.8676.497750.7515.30021.375749.7413.9867.332750.6715.682<			-			
749.3113.284795750.3314.71215.072749.3313.3121.060750.3514.74015.367749.3513.3401.327750.3714.76815.962749.3713.3681.594750.3914.76815.958749.3913.3961.862750.4114.82416.254749.4113.4242.130750.4314.82216.551749.4313.4522.999750.4514.80017.146749.4513.4602.668750.4714.90817.146749.4713.5082.938750.5114.96417.743749.5113.5643.479750.5314.99218.043749.5513.6204.023750.5715.04818.644749.5713.6484.296750.5915.07618.945749.5913.6764.569750.6115.10419.247749.6113.7044.843750.6315.13219.854749.6513.7805.392750.6715.18820.185749.6713.8846.267750.6915.21620.460749.6713.7885.667750.6915.21620.460749.6713.7865.667750.6715.18820.155749.6713.8726.497750.7515.30021.375749.6713.8446.220750.7715.32821.681749.7913.9567.332750.8715.468<						
749.3313.3121.060750.3514.74015.367749.3513.3401.327750.3714.76815.662749.3713.3661.594750.3914.79615.958749.3913.3961.862750.4114.82416.254749.4313.4522.399750.4514.88016.848749.4313.4522.399750.4514.88016.848749.4713.5062.938750.4714.90817.444749.4913.5363.208750.5114.96417.743749.5113.5643.479750.5515.02018.343749.5313.5923.751750.5515.02018.343749.5413.6764.569750.6115.10419.247749.6113.7044.843750.6315.13219.549749.6513.6764.592750.6715.18820.155749.6513.7605.392750.6715.18820.155749.6513.7605.392750.7115.24420.460749.6913.8726.497750.7315.27221.069749.7113.8446.220750.7315.35621.988749.7513.9006.775750.7715.32821.681749.7513.9006.775750.7715.32821.681749.7413.8446.220750.7315.4422.903749.7513.9006.775750.7715.328						
749.3513.3401.327750.3714.76815.662749.3713.3681.594750.3914.79615.958749.3913.3961.862750.4114.82416.254749.4113.4242.130750.4314.82216.551749.4513.4802.668750.4714.90817.146749.4513.4802.668750.4714.90617.444749.4713.5082.938750.5114.96417.743749.5113.5643.479750.5314.99218.043749.5313.5923.751750.5515.02018.343749.5513.6204.023750.5715.04818.944749.6113.7044.843750.6315.10419.247749.6113.7065.392750.6715.18820.155749.6513.7665.392750.6715.18820.155749.6713.7885.667750.6715.18820.155749.6713.7845.667750.7315.27221.069749.7513.8947.053750.7715.32821.861749.7713.9287.053750.7515.30021.375749.7513.9006.775750.7715.32821.984749.7713.9287.053750.7915.35422.963749.8314.0127.891750.8515.40022.912749.8514.0088.453750.9915.668 <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td>		,				
749.3713.3681.594750.3914.79615.958749.3913.3961.862750.4114.82416.254749.4113.4222.399750.4314.85216.551749.4313.4522.399750.4514.88016.848749.4513.4802.668750.4714.90817.144749.4713.5082.938750.4914.93617.444749.4713.5643.479750.5515.02018.343749.5113.6643.479750.5515.02018.343749.5313.6204.023750.5715.04818.644749.5713.6484.296750.5915.07618.945749.6113.7044.843750.6315.13219.549749.6313.7325.117750.6515.16019.852749.6713.7885.667750.6915.21620.460749.6913.8165.944750.7115.24420.764749.7513.9006.775750.7715.32821.881749.7513.9006.775750.7715.32621.988749.7513.9287.063750.8115.34422.912749.8314.0127.891750.8515.44022.912749.8314.0127.891750.8515.44022.912749.8314.0127.891750.8515.46823.221749.8314.0289.667750.99115.552 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749.3913.3961.862750.4114.82416.254749.4113.4242.130750.4314.85216.551749.4313.4522.399750.4514.88016.848749.4513.4802.668750.4714.90617.146749.4713.5082.938750.4914.93617.444749.4913.5363.208750.5114.99417.743749.5113.6643.479750.5314.99218.043749.5513.6204.023750.5715.04818.644749.5913.6764.569750.6115.10419.247749.6113.7044.843750.6315.13219.549749.6313.7325.117750.6515.10619.852749.6513.7605.392750.6715.18820.155749.6713.7885.667750.6915.21620.460749.6913.8165.944750.7115.22221.069749.7313.8246.497750.7515.30021.375749.7513.9006.775750.7915.32821.681749.8314.0127.803750.8315.44222.963749.8413.9847.612750.8315.44222.963749.7513.9006.775750.7915.32621.988749.7913.9567.332750.8115.35621.988749.7913.9567.332750.8715.668 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749.41 13.424 2.130 750.43 14.852 16.551 749.43 13.452 2.399 750.45 14.880 16.848 749.45 13.480 2.668 750.47 14.908 17.144 749.47 13.536 3.208 750.51 14.904 17.743 749.51 13.564 3.479 750.53 14.992 18.043 749.53 13.692 3.751 750.55 15.020 18.343 749.53 13.692 3.751 750.55 15.020 18.945 749.57 13.648 4.296 750.59 15.076 18.945 749.59 13.676 4.569 750.61 15.104 19.247 749.61 13.704 4.843 750.63 15.132 19.549 749.63 13.732 5.117 750.65 15.160 19.852 749.65 13.760 5.392 750.67 15.188 20.155 749.65 13.788 5.667 750.71 15.244 20.764 749.71 13.872 6.497 750.75 15.300 21.375 749.75 13.900 6.775 750.77 15.328 21.681 749.83 14.012 7.891 750.83 15.412 22.906 749.81 13.984 7.612 750.85 15.440 22.912 749.85 14.006 8.735 750.91 15.524 23.841 749.97 13.926 7.332 750.85 15.468 23.5						
749.4313.4522.399750.4514.80016.848749.4513.4802.668750.4714.90817.146749.4713.5082.938750.4914.93617.444749.4913.5643.479750.5314.99218.043749.5113.5643.479750.5515.02018.343749.5313.5923.751750.5515.02018.343749.5513.6204.023750.5715.04818.644749.5713.6484.296750.5915.07618.945749.5913.6764.569750.6115.10419.247749.6113.7044.843750.6315.13219.549749.6513.7605.392750.6715.18820.155749.6713.7885.667750.6915.21620.460749.6913.8165.944750.7115.24420.764749.6913.8726.497750.7515.30021.375749.7513.9006.775750.7715.32821.681749.7713.9267.332750.8115.34422.966749.8314.0127.891750.8515.44022.912749.8514.0608.735750.9115.52423.841749.9713.9567.332750.8715.56824.963749.9314.1527.891750.8515.44022.912749.8314.0068.735750.9115.524 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749.4513,4802,668 750.47 14,90817,146 749.47 13,5082,938 750.49 14,93617,444 749.49 13,5363,208 750.51 14,96417,743 749.51 13,5643,479 750.53 14,99218,043 749.53 13,6204,023 750.55 15,02018,343 749.55 13,6644,296 750.57 15,04818,644 749.57 13,6484,296 750.63 15,17419,247 749.61 13,7044,843 750.63 15,13219,549 749.63 13,7325,117 750.65 15,16019,852 749.67 13,7885,667 750.67 15,18820,165 749.67 13,7885,667 750.67 15,18820,165 749.69 13,8165,944 750.71 15,27221,069 749.75 13,900 $6,775$ 750.77 15,32821,681 749.75 13,990 $6,775$ 750.77 15,32821,681 749.75 13,984 $7,612$ 750.83 15,41222,603 749.83 14,012 $7,891$ 750.85 15,40022,912 749.85 14,040 $8,172$ 750.87 15,68623,531 749.75 13,984 $7,612$ 750.87 15,68623,531 749.87 14,068 $8,453$ 750.91 15,55224,152 749.97 14,2689,867 750.99 15,608 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>16,551</td></td<>						16,551
749.4713,5082,938750.4914,93617,444 749.49 13,5363,208750.5114,96417,743 749.51 13,5643,479750.5515,02018,043 749.53 13,5923,751750.5515,02018,343 749.55 13,6204,023750.5715,04818,644 749.57 13,6484,296750.5915,07618,945 749.59 13,6764,569750.6115,10419,247 749.61 13,7044,843750.6315,13219,549 749.65 13,7605,392750.6715,18820,155 749.65 13,7605,392750.6715,18820,155 749.67 13,7885,667750.6915,21620,460 749.69 13,8165,944750.7115,24420,764 749.73 13,8726,497750.7515,30021,375 749.75 13,9006,775750.7715,38422,296 749.79 13,9567,332750.8115,38422,296 749.83 14,0127,891750.8515,44022,912 749.85 14,0408,172750.8715,66823,221 749.85 14,0408,172750.8715,68823,221 749.85 14,0408,172750.8715,68823,221 749.85 14,0408,172750.8715,68823,521 749.93 14,124<	749.43		2,399	750.45		
749.4913,5363,208750.5114,96417,743749.5113,5643,479750.5314,99218,043749.5313,5923,751750.5515,02018,343749.5513,6204,023750.5715,04818,945749.5913,6764,569750.6115,10419,247749.6113,7044,843750.6315,13219,549749.6513,7044,843750.6515,16019,852749.6513,7605,392750.6715,18820,155749.6713,7885,667750.6915,21620,460749.6913,8165,944750.7115,24420,764749.6713,8446,220750.7315,27221,069749.7313,8726,497750.7515,30021,375749.7513,9006,775750.7715,32821,881749.7913,9567,332750.8115,41222,603749.8314,0127,891750.8515,44022,912749.8514,0408,172750.8715,52423,841749.8714,0688,453750.9915,54223,841749.9114,1249,017750.9515,58024,463749.9314,1529,300750.9715,60825,704749.9714,2068,735750.9115,55224,152749.9914,23610,151751.0115,664 <td>749.45</td> <td>13,480</td> <td>2,668</td> <td>750.47</td> <td>14,908</td> <td>17,146</td>	749.45	13,480	2,668	750.47	14,908	17,146
749.5113,5643,479750.5314,99218,043 749.53 13,5923,751750.5515,02018,343 749.55 13,6204,023750.5715,04818,644 749.57 13,6484,296750.5915,07618,945 749.59 13,6764,569750.6115,10419,247 749.61 13,7044,843750.6315,13219,549 749.65 13,7605,392750.6715,18820,155 749.65 13,7605,392750.6715,18820,155 749.65 13,7885,667750.6915,21620,460 749.69 13,8165,944750.7115,22420,764 749.71 13,8446,220750.7315,27221,069 749.75 13,9006,775750.7715,32821,681 749.77 13,9287,053750.7915,35621,988 749.79 13,9567,332750.8115,38422,296 749.85 14,0127,891750.8515,44022,912 749.85 14,0408,172750.8715,46823,221 749.85 14,0408,172750.8715,46823,221 749.85 14,0408,172750.8715,46823,221 749.85 14,0408,172750.8715,46823,221 749.85 14,0408,172750.9115,52423,841 749.97 14,268<	749.47	13,508	2,938	750.49	14,936	17,444
749.53 $13,592$ $3,751$ 750.55 $15,020$ $18,343$ 749.55 $13,620$ $4,023$ 750.57 $15,048$ $18,644$ 749.57 $13,648$ $4,296$ 750.59 $15,076$ $18,945$ 749.59 $13,676$ $4,569$ 750.61 $15,104$ $19,247$ 749.61 $13,704$ $4,843$ 750.63 $15,132$ $19,549$ 749.63 $13,732$ $5,117$ 750.65 $15,160$ $19,852$ 749.65 $13,760$ $5,392$ 750.67 $15,188$ $20,155$ 749.67 $13,788$ $5,667$ 750.69 $15,216$ $20,460$ 749.69 $13,816$ $5,944$ 750.71 $15,244$ $20,764$ 749.73 $13,872$ $6,497$ 750.75 $15,300$ $21,375$ 749.75 $13,900$ $6,775$ 750.77 $15,328$ $21,681$ 749.75 $13,900$ $6,775$ 750.83 $15,412$ $22,603$ 749.75 $13,984$ $7,612$ 750.83 $15,412$ $22,603$ 749.83 $14,012$ $7,891$ 750.87 $15,468$ $23,521$ 749.83 $14,006$ $8,735$ 750.91 $15,524$ $23,841$ 749.85 $14,006$ $8,735$ 750.91 $15,552$ $24,152$ 749.87 $14,268$ $9,867$ 750.99 $15,636$ $25,087$ 749.89 $14,096$ $8,735$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ <td< td=""><td>749.49</td><td>13,536</td><td>3,208</td><td>750.51</td><td>14,964</td><td>17,743</td></td<>	749.49	13,536	3,208	750.51	14,964	17,743
749.5513,6204,023 750.57 15,04818,644 749.57 13,6484,296 750.59 15,07618,945 749.59 13,6764,569 750.61 15,10419,247 749.61 13,7044,843 750.63 15,13219,549 749.63 13,7325,117 750.65 15,16019,852 749.65 13,7605,392 750.67 15,18820,155 749.67 13,8165,944 750.71 15,27221,069 749.71 13,8446,220 750.73 15,27221,069 749.73 13,8726,497 750.75 15,30021,375 749.75 13,9006,775 750.77 15,32821,681 749.77 13,928 $7,053$ 750.79 15,35621,988 749.79 13,956 $7,332$ 750.81 15,38422,296 749.83 14,012 7.891 750.85 15,44022,912 749.85 14,0408,172 750.87 15,56224,152 749.87 14,0688,453 750.99 15,56224,152 749.93 14,1529,300 750.95 15,58024,463 749.97 14,2089,867 750.99 15,60824,775 749.97 14,2089,867 750.99 15,63625,087 749.99 14,23610,151 751.01 15,64426,028 750.05 14,32011,008 751.07 15,74826,34	749.51	13,564	3,479	750.53	14,992	18,043
749.5513,6204,023 750.57 15,04818,644 749.57 13,6484,296 750.59 15,07618,945 749.59 13,6764,569 750.61 15,10419,247 749.61 13,7044,843 750.63 15,13219,549 749.63 13,7325,117 750.65 15,16019,852 749.65 13,7605,392 750.67 15,18820,155 749.67 13,8165,944 750.71 15,27221,069 749.71 13,8446,220 750.73 15,27221,069 749.73 13,8726,497 750.75 15,30021,375 749.75 13,9006,775 750.77 15,32821,681 749.77 13,928 $7,053$ 750.79 15,35621,988 749.79 13,956 $7,332$ 750.81 15,38422,296 749.83 14,012 7.891 750.85 15,44022,912 749.85 14,0408,172 750.87 15,56224,152 749.87 14,0688,453 750.99 15,56224,152 749.93 14,1529,300 750.95 15,58024,463 749.97 14,2089,867 750.99 15,60824,775 749.97 14,2089,867 750.99 15,63625,087 749.99 14,23610,151 751.01 15,64426,028 750.05 14,32011,008 751.07 15,74826,34	749.53	13,592	3,751	750.55	15,020	18,343
749.57 $13,648$ $4,296$ 750.59 $15,076$ $18,945$ 749.59 $13,676$ $4,569$ 750.61 $15,104$ $19,247$ 749.61 $13,704$ $4,843$ 750.63 $15,132$ $19,549$ 749.63 $13,732$ $5,117$ 750.65 $15,160$ $19,852$ 749.65 $13,760$ $5,392$ 750.67 $15,188$ $20,155$ 749.67 $13,788$ $5,667$ 750.69 $15,216$ $20,460$ 749.69 $13,816$ $5,944$ 750.71 $15,224$ $20,764$ 749.71 $13,844$ $6,220$ 750.73 $15,272$ $21,069$ 749.73 $13,872$ $6,497$ 750.75 $15,300$ $21,375$ 749.75 $13,900$ $6,775$ 750.77 $15,328$ $21,681$ 749.77 $13,928$ $7,053$ 750.79 $15,356$ $21,988$ 749.79 $13,956$ $7,332$ 750.81 $15,384$ $22,296$ 749.83 $14,012$ $7,891$ 750.85 $15,440$ $22,912$ 749.87 $14,068$ $8,453$ 750.99 $15,524$ $23,531$ 749.87 $14,068$ $8,735$ 750.97 $15,608$ $24,775$ 749.99 $14,124$ $9,017$ 750.95 $15,580$ $24,463$ 749.99 $14,206$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.07 $14,320$ $11,008$ <	749.55			750.57	15,048	
749.5913,6764,569750.6115,10419,247 749.61 13,7044,843750.6315,13219,549 749.63 13,7325,117750.6515,16019,852 749.65 13,7605,392750.6715,18820,155 749.67 13,7885,667750.6915,21620,460 749.69 13,8165,944750.7115,24420,764 749.73 13,8726,497750.7515,30021,375 749.75 13,9006,775750.7715,32821,681 749.75 13,9006,775750.7915,35621,988 749.77 13,9287,053750.7915,38422,2603 749.79 13,9667,332750.8115,38422,2603 749.83 14,0127,891750.8515,44022,912 749.85 14,0408,172750.8915,46823,221 749.87 14,0688,453750.9115,52224,152 749.93 14,1249,017750.9315,55224,152 749.97 14,2089,867750.9915,63625,087 749.97 14,2089,867750.9915,63625,087 749.99 14,23610,151751.0115,66425,400 750.05 14,32011,028751.0315,69225,714 750.05 14,32011,028751.0315,63027,290 750.11 14,404<						
749.6113,7044,843750.6315,13219,549749.6313,7325,117750.6515,16019,852749.6513,7605,392750.6715,18820,155749.6713,7885,667750.6915,21620,460749.6913,8165,944750.7115,24420,764749.7313,8726,497750.7515,30021,375749.7513,9006,775750.7715,32821,681749.7913,9567,332750.7915,35621,988749.7913,9567,332750.8115,44022,206749.8113,9847,612750.8315,44022,912749.8314,0127,891750.8515,44022,912749.8514,0408,172750.8715,46823,221749.8514,0408,735750.9115,55224,152749.9114,1529,300750.9515,58024,463749.9314,1529,300750.9515,58024,463749.9514,1809,583750.9715,63625,087749.9714,23610,151751.0115,66425,087749.9914,23610,151751.0315,69225,714750.0514,32011,008751.0715,74826,343750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,86					,	
749.63 $13,732$ $5,117$ 750.65 $15,160$ $19,852$ 749.65 $13,760$ $5,392$ 750.67 $15,188$ $20,155$ 749.67 $13,788$ $5,667$ 750.69 $15,216$ $20,460$ 749.69 $13,816$ $5,944$ 750.71 $15,2244$ $20,764$ 749.71 $13,844$ $6,220$ 750.73 $15,272$ $21,069$ 749.75 $13,900$ $6,775$ 750.75 $15,300$ $21,375$ 749.75 $13,900$ $6,775$ 750.77 $15,328$ $21,681$ 749.77 $13,928$ $7,053$ 750.79 $15,356$ $21,988$ 749.79 $13,956$ $7,332$ 750.81 $15,384$ $22,296$ 749.83 $14,012$ $7,891$ 750.85 $15,440$ $22,912$ 749.83 $14,012$ $7,891$ 750.87 $15,468$ $23,221$ 749.85 $14,040$ $8,172$ 750.87 $15,468$ $23,221$ 749.87 $14,068$ $8,453$ 750.91 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.07 $15,776$ $26,628$ 750.07 $14,348$ $11,295$ 751.07 $15,784$ $26,343$ 750.07 $14,348$ $11,295$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749.6513,7605,392 750.67 15,18820,155 749.67 13,7885,667 750.69 15,21620,460 749.69 13,8165,944 750.71 15,24420,764 749.71 13,8446,220 750.73 15,27221,069 749.73 13,8726,497 750.75 15,30021,375 749.75 13,9006,775 750.77 15,35621,988 749.77 13,928 $7,053$ 750.79 15,35621,988 749.79 13,956 $7,332$ 750.81 15,38422,296 749.81 13,984 $7,612$ 750.83 15,41222,603 749.83 14,012 $7,891$ 750.85 15,44022,912 749.85 14,0408,172 750.87 15,46823,221 749.85 14,0408,172 750.89 15,49623,531 749.89 14,0968,735 750.91 15,52423,841 749.93 14,1529,300 750.95 15,58024,463 749.95 14,1809,583 750.97 15,60824,775 749.97 14,2089,867 750.99 15,63625,087 749.99 14,23610,151 751.01 15,66425,400 750.05 14,32011,008 751.07 15,74826,343 750.07 14,34811,295 751.09 15,77626,658 750.09 14,37611,582 751.17 15,8882						
749.6713,7885,667 750.69 15,21620,460 749.69 13,8165,944 750.71 15,24420,764 749.71 13,8446,220 750.73 15,27221,069 749.73 13,8726,497 750.75 15,30021,375 749.75 13,9006,775 750.77 15,32821,681 749.77 13,928 $7,053$ 750.79 15,35621,988 749.79 13,956 $7,332$ 750.81 15,38422,296 749.81 13,984 $7,612$ 750.85 15,44022,912 749.83 14,012 $7,891$ 750.85 15,44022,912 749.85 14,040 $8,172$ 750.87 15,46823,221 749.87 14,068 $8,453$ 750.89 15,49623,531 749.93 14,152 $9,300$ 750.95 15,58024,463 749.93 14,152 $9,300$ 750.95 15,58024,463 749.97 14,208 $9,867$ 750.99 15,66825,087 749.99 14,236 $10,151$ 751.01 15,66425,400 750.05 14,320 $11,008$ 751.07 15,72026,028 750.07 14,348 $11,295$ 751.09 15,77626,658 750.09 14,376 $11,582$ 751.11 15,86027,607 750.15 14,46012,447 751.17 15,88827,924 750.17 14,48812,736 751.19						
749.6913,8165,944750.7115,24420,764 749.71 13,8446,220750.7315,27221,069 749.73 13,8726,497750.7515,30021,375 749.75 13,9006,775750.7715,32821,681 749.77 13,9287,053750.7915,35621,988 749.79 13,9567,332750.8115,38422,296 749.81 13,9847,612750.8315,41222,603 749.83 14,0127,891750.8515,44022,912 749.85 14,0408,172750.8715,46823,221 749.87 14,0688,453750.8915,49623,531 749.87 14,0688,735750.9115,52423,841 749.93 14,1529,300750.9515,58024,463 749.93 14,1529,300750.9515,58024,463 749.95 14,1809,583750.9715,60824,775 749.97 14,2089,867750.9915,63625,087 749.99 14,23610,151751.0315,69225,714 750.05 14,32011,008751.0315,69225,714 750.05 14,32011,008751.0515,72026,028 750.09 14,37611,582751.1115,86027,607 750.15 14,46012,447751.1315,83227,290 750.14 14,460<						
749.7113,8446,220750.7315,27221,069 749.73 13,8726,497750.7515,30021,375 749.75 13,9006,775750.7715,32821,681 749.77 13,9287,053750.7915,35621,988 749.79 13,9567,332750.8115,38422,296 749.81 13,9847,612750.8315,41222,603 749.83 14,0127,891750.8515,44022,912 749.85 14,0408,172750.8715,46823,531 749.87 14,0688,453750.8915,49623,531 749.87 14,0688,735750.9115,52423,841 749.99 14,0968,735750.9115,55224,152 749.93 14,1529,300750.9515,58024,463 749.95 14,1809,583750.9715,60824,775 749.97 14,2089,867750.9915,63625,400 750.01 14,26410,436751.0315,69225,714 750.05 14,32011,008751.0715,74826,343 750.07 14,34811,295751.10915,77626,658 750.09 14,37611,582751.1115,86027,607 750.15 14,46012,447751.1715,88827,924 750.19 14,51613,027751.2115,94428,561 750.23 14,57						
749.73 $13,872$ $6,497$ 750.75 $15,300$ $21,375$ 749.75 $13,900$ $6,775$ 750.77 $15,328$ $21,681$ 749.77 $13,928$ $7,053$ 750.79 $15,356$ $21,988$ 749.79 $13,956$ $7,332$ 750.81 $15,384$ $22,296$ 749.81 $13,984$ $7,612$ 750.83 $15,412$ $22,603$ 749.83 $14,012$ $7,891$ 750.85 $15,440$ $22,912$ 749.85 $14,040$ $8,172$ 750.87 $15,468$ $23,221$ 749.87 $14,068$ $8,453$ 750.89 $15,496$ $23,531$ 749.89 $14,096$ $8,735$ 750.91 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.05 $14,320$ $11,008$ 751.05 $15,720$ $26,028$ 750.09 $14,376$ $11,582$ 751.11 $15,864$ $26,974$ 750.15 $14,460$ $12,447$ 751.13 $15,832$ $27,290$ 750.15 $14,460$ $12,447$ 751.13 $15,916$ $28,243$ 750.17 $14,488$ $12,736$ <						
749.75 $13,900$ $6,775$ 750.77 $15,328$ $21,681$ 749.77 $13,928$ $7,053$ 750.79 $15,356$ $21,988$ 749.79 $13,956$ $7,332$ 750.81 $15,384$ $22,296$ 749.81 $13,984$ $7,612$ 750.83 $15,412$ $22,603$ 749.83 $14,012$ $7,891$ 750.85 $15,440$ $22,912$ 749.85 $14,040$ $8,172$ 750.87 $15,468$ $23,221$ 749.85 $14,040$ $8,735$ 750.91 $15,524$ $23,841$ 749.87 $14,068$ $8,453$ 750.99 $15,560$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.93 $14,152$ $9,300$ 750.95 $15,608$ $24,775$ 749.93 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.05 $14,320$ $11,082$ 751.11 $15,864$ $26,974$ 750.11 $14,440$ $11,870$ 751.13 $15,832$ $27,290$ 750.13 $14,432$ $12,158$ 751.17 $15,944$ $26,974$ 750.17 $14,4460$ $12,447$,				
749.77 $13,928$ $7,053$ 750.79 $15,356$ $21,988$ 749.79 $13,956$ $7,332$ 750.81 $15,384$ $22,296$ 749.81 $13,984$ $7,612$ 750.83 $15,412$ $22,603$ 749.83 $14,012$ $7,891$ 750.85 $15,440$ $22,912$ 749.83 $14,040$ $8,172$ 750.87 $15,468$ $23,531$ 749.85 $14,040$ $8,735$ 750.99 $15,496$ $23,531$ 749.87 $14,068$ $8,453$ 750.99 $15,524$ $23,841$ 749.89 $14,124$ $9,017$ 750.93 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,604$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.07 $14,348$ $11,295$ 751.09 $15,776$ $26,658$ 750.09 $14,376$ $11,582$ 751.11 $15,800$ $27,607$ 750.13 $14,432$ $12,477$ 751.13 $15,872$ $27,290$ 750.15 $14,460$ $12,447$ 751.17 $15,944$ $28,243$ 750.17 $14,488$ $12,736$						
749.79 $13,956$ $7,332$ 750.81 $15,384$ $22,296$ 749.81 $13,984$ $7,612$ 750.83 $15,412$ $22,603$ 749.83 $14,012$ $7,891$ 750.85 $15,440$ $22,912$ 749.85 $14,040$ $8,172$ 750.87 $15,468$ $23,221$ 749.87 $14,068$ $8,453$ 750.89 $15,496$ $23,531$ 749.87 $14,068$ $8,735$ 750.91 $15,524$ $23,841$ 749.99 $14,096$ $8,735$ 750.91 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.97 $14,208$ $9,867$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.03 $14,292$ $10,722$ 751.05 $15,720$ $26,028$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.07 $14,348$ $11,295$ 751.13 $15,832$ $27,290$ 750.11 $14,404$ $11,870$ 751.13 $15,886$ $27,924$ 750.15 $14,460$ $12,447$ 751.17 $15,888$ $27,924$ 750.17 $14,488$ $12,736$ 751.21 $15,944$ $28,661$ 750.23 $14,572$ $13,608$						
749.81 $13,984$ $7,612$ 750.83 $15,412$ $22,603$ 749.83 $14,012$ $7,891$ 750.85 $15,440$ $22,912$ 749.85 $14,040$ $8,172$ 750.87 $15,468$ $23,221$ 749.87 $14,068$ $8,453$ 750.89 $15,496$ $23,531$ 749.89 $14,096$ $8,735$ 750.91 $15,524$ $23,841$ 749.99 $14,124$ $9,017$ 750.93 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.05 $14,320$ $11,088$ 751.07 $15,748$ $26,974$ 750.11 $14,404$ $11,870$ 751.13 $15,832$ $27,290$ 750.13 $14,432$ $12,447$ 751.17 $15,888$ $27,924$ 750.17 $14,488$ $12,736$ 751.19 $15,916$ $28,243$ 750.19 $14,516$ $13,027$ 751.21 $15,944$ $28,561$ 750.23 $14,572$ $13,608$						
749.83 $14,012$ $7,891$ 750.85 $15,440$ $22,912$ 749.85 $14,040$ $8,172$ 750.87 $15,468$ $23,221$ 749.87 $14,068$ $8,453$ 750.89 $15,496$ $23,531$ 749.89 $14,096$ $8,735$ 750.91 $15,524$ $23,841$ 749.91 $14,124$ $9,017$ 750.93 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.05 $14,320$ $11,088$ 751.07 $15,748$ $26,343$ 750.09 $14,376$ $11,582$ 751.11 $15,804$ $26,974$ 750.13 $14,432$ $12,158$ 751.13 $15,832$ $27,290$ 750.15 $14,460$ $12,447$ 751.17 $15,848$ $27,924$ 750.15 $14,460$ $12,447$ 751.17 $15,944$ $28,561$ 750.21 $14,544$ $13,027$ 751.21 $15,972$ $28,880$ 750.23 $14,572$ $13,608$ 751.25 $16,000$ $29,200$						
749.85 $14,040$ $8,172$ 750.87 $15,468$ $23,221$ 749.87 $14,068$ $8,453$ 750.89 $15,496$ $23,531$ 749.89 $14,096$ $8,735$ 750.91 $15,524$ $23,841$ 749.91 $14,124$ $9,017$ 750.93 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.95 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.09 $14,376$ $11,582$ 751.11 $15,804$ $26,974$ 750.11 $14,404$ $11,870$ 751.13 $15,832$ $27,290$ 750.13 $14,432$ $12,158$ 751.15 $15,860$ $27,607$ 750.15 $14,460$ $12,447$ 751.17 $15,916$ $28,243$ 750.17 $14,488$ $12,736$ 751.19 $15,972$ $28,880$ 750.21 $14,544$ $13,317$ 751.23 $15,972$ $28,880$ 750.23 $14,572$ $13,608$ 751.25 $16,000$ $29,200$						
749.87 $14,068$ $8,453$ 750.89 $15,496$ $23,531$ 749.89 $14,096$ $8,735$ 750.91 $15,524$ $23,841$ 749.91 $14,124$ $9,017$ 750.93 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.03 $14,292$ $10,722$ 751.05 $15,720$ $26,028$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.07 $14,348$ $11,295$ 751.09 $15,776$ $26,658$ 750.09 $14,376$ $11,582$ 751.11 $15,804$ $26,974$ 750.11 $14,404$ $11,870$ 751.13 $15,832$ $27,290$ 750.13 $14,432$ $12,447$ 751.17 $15,888$ $27,924$ 750.17 $14,488$ $12,736$ 751.19 $15,916$ $28,243$ 750.19 $14,516$ $13,027$ 751.21 $15,944$ $28,561$ 750.21 $14,544$ $13,317$ 751.23 $15,972$ $28,880$ 750.23 $14,572$ $13,608$ 751.25 $16,000$ $29,200$						
749.89 $14,096$ $8,735$ 750.91 $15,524$ $23,841$ 749.91 $14,124$ $9,017$ 750.93 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.03 $14,292$ $10,722$ 751.05 $15,720$ $26,028$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.07 $14,348$ $11,295$ 751.09 $15,776$ $26,658$ 750.09 $14,376$ $11,582$ 751.11 $15,804$ $26,974$ 750.11 $14,404$ $11,870$ 751.13 $15,832$ $27,290$ 750.13 $14,432$ $12,447$ 751.17 $15,888$ $27,924$ 750.17 $14,488$ $12,736$ 751.19 $15,916$ $28,243$ 750.19 $14,516$ $13,027$ 751.21 $15,972$ $28,880$ 750.23 $14,572$ $13,608$ 751.25 $16,000$ $29,200$						
749.91 $14,124$ $9,017$ 750.93 $15,552$ $24,152$ 749.93 $14,152$ $9,300$ 750.95 $15,580$ $24,463$ 749.95 $14,180$ $9,583$ 750.97 $15,608$ $24,775$ 749.97 $14,208$ $9,867$ 750.99 $15,636$ $25,087$ 749.99 $14,236$ $10,151$ 751.01 $15,664$ $25,400$ 750.01 $14,264$ $10,436$ 751.03 $15,692$ $25,714$ 750.03 $14,292$ $10,722$ 751.05 $15,720$ $26,028$ 750.05 $14,320$ $11,008$ 751.07 $15,748$ $26,343$ 750.07 $14,348$ $11,295$ 751.09 $15,776$ $26,658$ 750.09 $14,376$ $11,582$ 751.11 $15,804$ $26,974$ 750.11 $14,404$ $11,870$ 751.13 $15,832$ $27,290$ 750.13 $14,432$ $12,447$ 751.17 $15,888$ $27,924$ 750.17 $14,488$ $12,736$ 751.19 $15,916$ $28,243$ 750.19 $14,516$ $13,027$ 751.21 $15,944$ $28,561$ 750.23 $14,572$ $13,608$ 751.25 $16,000$ $29,200$						
749.9314,1529,300750.9515,58024,463749.9514,1809,583750.9715,60824,775749.9714,2089,867750.9915,63625,087749.9914,23610,151751.0115,66425,400750.0114,26410,436751.0315,69225,714750.0314,29210,722751.0515,72026,028750.0514,32011,008751.0715,74826,643750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,447751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2314,57213,608751.2516,00029,200						
749.9514,1809,583750.9715,60824,775749.9714,2089,867750.9915,63625,087749.9914,23610,151751.0115,66425,400750.0114,26410,436751.0315,69225,714750.0314,29210,722751.0515,72026,028750.0514,32011,008751.0715,74826,343750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,458751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2314,57213,608751.2516,00029,200						
749.9714,2089,867750.9915,63625,087749.9914,23610,151751.0115,66425,400750.0114,26410,436751.0315,69225,714750.0314,29210,722751.0515,72026,028750.0514,32011,008751.0715,74826,343750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
749.9914,23610,151751.0115,66425,400750.0114,26410,436751.0315,69225,714750.0314,29210,722751.0515,72026,028750.0514,32011,008751.0715,74826,343750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.0114,26410,436751.0315,69225,714750.0314,29210,722751.0515,72026,028750.0514,32011,008751.0715,74826,343750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.0314,29210,722751.0515,72026,028750.0514,32011,008751.0715,74826,343750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.0514,32011,008751.0715,74826,343750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.0714,34811,295751.0915,77626,658750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.0914,37611,582751.1115,80426,974750.1114,40411,870751.1315,83227,290750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200					,	
750.1114,40411,870751.1315,83227,290750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.1314,43212,158751.1515,86027,607750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.1514,46012,447751.1715,88827,924750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.1714,48812,736751.1915,91628,243750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.1914,51613,027751.2115,94428,561750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.2114,54413,317751.2315,97228,880750.2314,57213,608751.2516,00029,200						
750.23 14,572 13,608 751.25 16,000 29,200		,				
		14,544	13,317	751.23	15,972	28,880
	750.23	14,572	13,608	751.25	16,000	29,200
		14,600	13,900			

Summary for Pond B-2: Bioretention B-2

Inflow Outflow Primary	Inflow Area = 6.750 ac, 69.16% Impervious, Inflow Depth = 2.30" for 10-yr event Inflow = 25.52 cfs @ 11.97 hrs, Volume= 1.296 af Outflow = 4.85 cfs @ 12.12 hrs, Volume= 1.102 af, Atten= 81%, Lag= 9.3 min Primary = 4.61 cfs @ 11.98 hrs, Volume= 1.082 af Secondary = 0.79 cfs @ 12.16 hrs, Volume= 0.020 af									
			Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Surf.Area= 25,099 sf Storage= 26,999 cf							
			min calculated for 1.102 af (85% of inflow) nin(879.5 - 795.2)							
Volume	Invert	Avail.Sto	prage Storage Description							
#1	749.50'		00 cf Surf. Storage (Prismatic) Listed below (Recalc)							
		_								
Elevatio		Area	Inc.Store Cum.Store							
(fee		sq-ft)	(cubic-feet) (cubic-feet)							
749.: 751.:		5,000),000	0 0 45,000 45,000							
751.3	50 50	,000	45,000 45,000							
Device	Routing	Invert	Outlet Devices							
#1	Primary	747.50'								
	,		L= 105.0' CPP, square edge headwall, Ke= 0.500							
			Inlet / Outlet Invert= 747.50' / 747.25' S= 0.0024 '/' Cc= 0.900							
			n= 0.012, Flow Area= 0.79 sf							
#2	Device 1	750.00'	, , , , , , , , , , , , , , , , , , ,							
#3	Secondary	746.00'	Limited to weir flow at low heads							
#3	Secondary	740.00	12.0" Round Culvert-Secondary L= 130.0' CPP, square edge headwall, Ke= 0.500							
			Inlet / Outlet Invert= 746.00' / 738.10' S= 0.0608 '/' Cc= 0.900							
			n=0.012, Flow Area= 0.79 sf							
#4	Device 3	750.75'								
			Limited to weir flow at low heads							
#5	Primary	751.00'	10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)							
			@ 11.98 hrs HW=750.61' TW=748.57' (Dynamic Tailwater) Introls 4.33 cfs @ 5.51 fps)							

-**1=Culvert-Primary** (Outlet Controls 4.33 cfs @ 5.51 fps) **—2=Grate-Primary** (Passes 4.33 cfs of 12.32 cfs potential flow)

-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.77 cfs @ 12.16 hrs HW=750.85' TW=0.00' (Dynamic Tailwater)

-3=Culvert-Secondary (Passes 0.77 cfs of 7.88 cfs potential flow) -4=Grate-Secondary (Weir Controls 0.77 cfs @ 1.01 fps)

Proposed Conditions I

2

Ò

4

6

8

10

12

Discharge (cfs)

Elevation (feet)

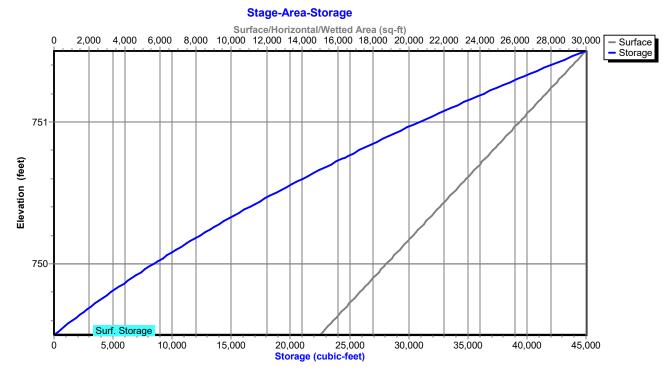
Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge

Pond B-2: Bioretention B-2

Pond B-2: Bioretention B-2

14


16

18

20

22

24

Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond B-2: Bioretention B-2

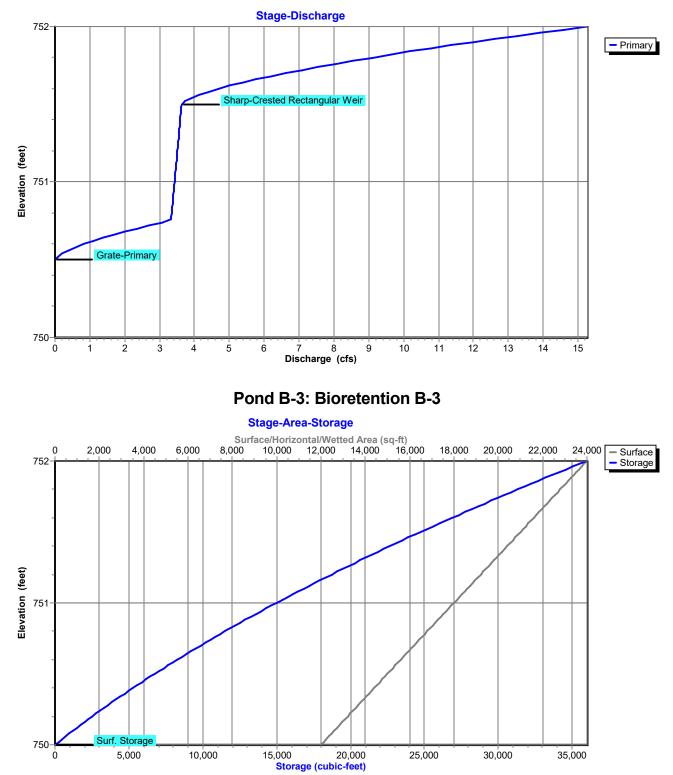
Elevation Discharge Primary Secondary (fest) (cfs) (cfs)					I			. .
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
749.560.000.00750.584.634.636.630.00749.580.000.000.00750.624.674.670.00749.600.000.000.00750.624.674.670.00749.640.000.000.00750.664.714.710.00749.660.000.000.00750.664.714.710.00749.680.000.000.00750.704.754.750.00749.700.000.000.00750.724.774.770.00749.740.000.000.00750.764.844.810.03749.740.000.000.00750.764.844.810.03749.740.000.000.00750.784.974.830.14749.780.000.000.00750.805.144.850.29749.800.000.000.00750.825.354.870.48749.820.000.000.00750.866.154.921.23749.860.000.000.00750.926.794.961.83749.820.000.000.00750.926.794.961.83749.840.000.000.00750.947.154.982.17749.900.000.000.00750.947.154.961.83749.920.000.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00	0.00		750.56	4.61		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	749.56	0.00	0.00	0.00	750.58	4.63	4.63	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	749.58	0.00	0.00	0.00	750.60	4.65	4.65	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	749.60	0.00	0.00	0.00	750.62	4.67	4.67	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
749.80 0.00 0.00 0.00 750.82 5.35 4.87 0.48 749.82 0.00 0.00 0.00 750.84 5.59 4.89 0.71 749.84 0.00 0.00 0.00 750.88 6.15 4.92 1.23 749.86 0.00 0.00 0.00 750.90 6.46 4.94 1.52 749.90 0.00 0.00 0.00 750.90 6.79 4.96 1.83 749.92 0.00 0.00 0.00 750.94 7.15 4.98 2.17 749.94 0.00 0.00 0.00 750.94 7.15 4.98 2.17 749.94 0.00 0.00 0.00 750.96 7.52 5.00 2.52 749.96 0.00 0.00 0.00 750.98 7.90 5.02 2.89 749.98 0.00 0.00 0.00 751.96 7.52 5.00 2.89 749.98 0.00 0.00 0.00 751.08 8.21 5.33 4.09 750.00 0.00 0.00 751.00 8.31 5.04 3.27 750.06 0.38 0.38 0.00 751.08 10.81 5.85 4.96 750.12 1.021 0.00 751.10 11.57 6.16 5.42 750.16 1.67 1.67 0.00 751.16 14.13 7.27 6.37 750.14 1.37 1.37 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
749.88 0.00 0.00 0.00 750.90 6.46 4.94 1.52 749.90 0.00 0.00 0.00 750.92 6.79 4.96 1.83 749.92 0.00 0.00 0.00 750.94 7.15 4.98 2.17 749.94 0.00 0.00 0.00 750.96 7.52 5.00 2.52 749.96 0.00 0.00 0.00 750.98 7.90 5.02 2.89 749.98 0.00 0.00 0.00 751.04 8.82 5.15 3.67 750.00 0.00 0.00 751.04 9.42 5.33 4.09 750.04 0.21 0.21 0.00 751.06 10.08 5.57 4.52 750.06 0.38 0.38 0.00 751.16 10.08 5.57 4.52 750.06 0.38 0.38 0.00 751.16 10.81 5.85 4.96 750.08 0.59 0.59 0.00 751.12 12.39 6.50 5.89 750.12 1.09 1.09 0.00 751.14 13.24 6.87 6.37 750.14 1.37 1.37 0.00 751.22 16.02 8.13 7.90 750.22 2.70 2.70 0.00 751.24 17.83 9.58 8.23 750.24 3.47 3.47 0.00 751.26 17.83 9.58 8.25 750.30 4.30 4.30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	749.90				750.92			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	749.92	0.00	0.00	0.00	750.94	7.15	4.98	2.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	749.94	0.00	0.00	0.00	750.96	7.52	5.00	2.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	749.96	0.00	0.00	0.00	750.98	7.90	5.02	2.89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	749.98		0.00	0.00	751.00	8.31	5.04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750.00						5.15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
750.364.414.410.00751.3821.3312.978.35750.384.434.430.00751.4021.9713.608.37750.404.454.450.00751.4222.6214.238.39750.424.474.470.00751.4423.2914.888.41750.444.494.490.00751.4623.9715.558.42750.464.514.510.00751.4824.6716.238.44750.484.534.530.00751.50 25.3816.928.46								
750.384.434.430.00751.4021.9713.608.37750.404.454.450.00751.4222.6214.238.39750.424.474.470.00751.4423.2914.888.41750.444.494.490.00751.4623.9715.558.42750.464.514.510.00751.4824.6716.238.44750.484.534.530.00751.5025.3816.928.46								
750.404.454.450.00751.4222.6214.238.39750.424.474.470.00751.4423.2914.888.41750.444.494.490.00751.4623.9715.558.42750.464.514.510.00751.4824.6716.238.44750.484.534.530.00751.5025.3816.928.46								
750.424.470.00751.4423.2914.888.41750.444.494.490.00751.4623.9715.558.42750.464.514.510.00751.4824.6716.238.44750.484.534.530.00751.50 25.3816.928.46								
750.444.494.490.00751.4623.9715.558.42750.464.514.510.00751.4824.6716.238.44750.484.534.530.00751.50 25.3816.928.46								
750.464.514.510.00751.4824.6716.238.44750.484.534.530.00751.50 25.3816.928.46								
750.48 4.53 4.53 0.00 751.50 25.38 16.92 8.46	750.44				751.46			
	750.46	4.51	4.51	0.00	751.48	24.67	16.23	8.44
750.50 4.55 4.55 0.00	750.48	4.53	4.53	0.00	751.50	25.38	16.92	8.46
	750.50	4.55	4.55	0.00				

Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 47

Stage-Area-Storage for Pond B-2: Bioretention B-2

				I		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
749.5215,150301750.5422,80019,656749.5415,300606750.5622,95020,113749.5615,450913750.5823,10020,574749.5615,450913750.6823,25021,038749.6015,7501,538750.6423,55021,973749.6215,9001,854750.6623,85022,921749.6416,2002,446750.6823,85022,921749.6816,3502,821750.7024,00023,400749.7016,6503,150750.7224,15023,882749.7216,6503,482750.7424,30024,366749.7416,9504,153750.7824,60025,344749.7617,9505,534750.8224,90026,334749.8017,2505,534750.8224,90026,334749.8017,2505,534750.8225,50026,834749.8017,6505,544750.8425,05026,834749.8617,7005,886750.8825,35027,841749.8617,8506,241750.9925,65028,861749.9018,0006,600750.9225,65028,861749.9418,3007,326750.9625,95029,876749.9418,9008,143751.0226,60031,464750.0218,9008,160751.1627,45035,			<u> </u>			
749.5415.300606750.5622.95020.113749.5615.450913750.5823.10020.574749.5815.6001.224750.6023.25021.038749.6015.7501.538750.6223.40021.504749.6416.0502.173750.6623.70022.446749.6416.3502.821750.7024.00023.400749.6816.3502.821750.7024.00023.400749.7016.5003.150750.7224.15023.882749.7216.6503.482750.7424.30024.866749.7416.8003.816750.7624.45025.344749.7817.1004.494750.8024.75025.837749.8017.2504.837750.8224.90026.334749.8417.5505.534750.8222.90026.334749.8417.8506.600750.9225.65028.861749.9218.1506.601750.9225.65028.861749.9418.3007.326750.9625.95028.861749.9418.6008.04751.0426.55033.062749.9418.3007.326750.9625.95028.861749.9418.3007.326750.9625.95028.861749.9418.6008.04751.0426.55033.062750.0619.2009.576751.0826.7003						
749.5615.450913750.5823.10020.574749.5815,6001.224750.6023.25021.038749.6015,7501.838750.6223.40021.504749.6215.9001.854750.6423.55021.973749.6416,0502.173750.6623,70022.446749.6616,2002.496750.6823.85022.921749.6416,6503.150750.7224.15023.882749.7016,5003.150750.7224.45024.863749.7416,8003.842750.7424.30025.344749.7616,9504.153750.7824.60025.344749.7616,9504.153750.8224.90026.334749.8017,2505.837750.8224.90026.334749.8117,5005.184750.8625.20027.336749.8617,7005.884750.8825.35027.841749.9918,6006.961750.9225.65028.360749.9418,3007.326750.9826.10030.444749.9518,4507.69425.90029.376749.9618,4507.694751.0226.65028.360749.9618,4507.694750.9826.10030.444749.9918,6008.644751.0226.65031.993750.0419.9509.937751.1627.75036.336<	749.52	15,150	301	750.54	22,800	19,656
749.5815.6001.224750.6023.25021.038749.6015.7501.538750.6223.40021.504749.6215.9001.854750.6623.70022.446749.6416.0502.173750.6623.85022.921749.6816.3502.821750.7024.00023.400749.7016.5003.150750.7224.15023.882749.7216.6503.482750.7624.45024.853749.7416.9504.153750.7624.45024.853749.7416.9504.153750.7624.45025.344749.7817.1004.494750.8024.75025.837749.8017.2504.837750.8224.90026.334749.8417.5505.534750.8625.20027.336749.8417.7005.886750.8825.20027.841749.8517.7005.886750.9825.50028.851749.9018.0006.600750.9225.65028.861749.9418.3007.326750.9625.95029.894749.9218.1506.961750.9826.10031.464750.0218.7508.438751.0226.40031.938750.0018.7508.438751.0226.40031.944749.9518.9008.644751.0826.85033.962750.0619.2009.576751.0826.850 <td>749.54</td> <td>15,300</td> <td>606</td> <td>750.56</td> <td>22,950</td> <td>20,113</td>	749.54	15,300	606	750.56	22,950	20,113
74958155001122475060232502103474962159001.854750642323502197374964160502.173750662323502244674966162002.4967506823238502292174968163502.821750.7024243002340074972166503.482750.7424243002436674974166503.482750.7624243663482750.78246002534474978171004.494750.8024275026334749.801772504.837750.822490026334749.80177005.886750.8825.20027.336749.861770028.861749.8417.5505.534750.8625.50028.861749.9018.0006.600750.9225.65028.861749.9018.0006.600750.9225.65028.861749.9218.1506.961750.0825.95029.894749.9218.1506.961750.9625.95029.894749.9618.4507.994750.0826.50030.9	749.56	15,450	913	750.58	23,100	20,574
7496015,7501,538750.6223,40021,504749.6416,0502,173750.6623,70022,446749.6616,2002,496750.6823,85022,921749.6816,3502,821750.7224,15023,400749.7016,5003,150750.7224,15023,882749.7216,6503,482750.7624,45024,863749.7416,8003,816750.7624,45024,853749.7616,9504,153750.7824,60025,344749.7817,1004,494750.8024,75025,837749.8017,2504,837750.8224,90026,334749.8417,5505,534750.8625,20027,336749.8417,5505,534750.8625,55028,850749.9418,0006,600750.9225,65028,360749.9418,0006,600750.9425,80029,376749.9418,3007,226750.9625,95028,861749.9418,6008,044751.0026,50031,993750.0419,0509,193751.0426,65031,993750.0419,0509,193751.0626,70032,526750.0619,2009,576751.1827,60033,660750.1019,05011,533751.1227,15034,142750.1019,95011,533751.14			1.224			
749.6215,9001.854750.6423,55021,973749.6416,0502,173750.6623,70022,446749.6616,2002,496750.6823,85022,921749.6816,5003,150750.7224,10023,400749.7016,6503,482750.7424,30024,366749.7216,6503,482750.7624,45024,863749.7616,9504,153750.7624,46025,344749.7817,1004,494750.8024,75025,837749.8017,2504,837750.8224,90026,834749.8117,0005,184750.8425,05026,834749.8217,4005,184750.8625,20027,336749.8617,7005,886750.8825,35027,841749.8617,8506,241750.9025,50028,350749.9018,0006,600750.9225,65028,861749.9118,1506,961750.9425,80029,376749.9418,3007,326750.9625,95029,894749.9618,4507,694751.0826,67031,454750.0218,9008,814751.0226,60031,464750.0319,3509,962751.1027,00033,600750.1019,65010,742751.1427,35035,233750.1619,95011,533751.1627,450 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749.6416.0502.173750.6623.70022.446749.6616.2002.496750.6823.85022.921749.6816.3502.821750.7024.00023.400749.7016.5503.482750.7224.15023.882749.7216.6503.482750.7624.45024.863749.7416.8003.816750.7624.45024.863749.7416.8003.816750.7624.45025.837749.7617.2504.837750.8224.90026.334749.8017.2505.534750.8625.20027.336749.8017.5505.534750.8625.20027.336749.8617.7005.886750.8825.35028.861749.9018.0006.901750.9225.65028.861749.9018.0007.6961750.9425.80029.376749.9418.3007.326750.9625.95029.884749.9418.3007.604750.9826.10030.414749.9618.7508.418751.0226.40031.493750.0018.7508.438751.0226.40031.493750.0119.95010.350751.1027.90033.602750.0219.3009.562751.0826.55031.993750.0419.95011.533751.1627.45035.233750.1419.95011.533751.1227.750						
749.6616.2002.496750.6823.85022.921749.6816.3502.821750.7024.00023.400749.7016.5003.150750.7224.15023.882749.7216.6503.482750.7624.45024.853749.7416.8003.816750.7624.45024.853749.7616.9504.153750.7824.60025.344749.7817.1004.494750.8024.75025.837749.8017.2504.837750.8224.90026.334749.8117.6505.534750.8625.50027.336749.8217.4005.886750.8825.35027.841749.8417.8506.241750.9025.50028.350749.8617.7005.886750.8225.50028.3861749.9018.0006.600750.9225.65028.861749.9218.1506.961750.9425.80029.376749.9418.3007.694751.0226.40031.464750.0218.9008.814751.0226.40031.464750.0218.9008.814751.0226.40031.464750.0319.3509.962751.1027.30034.860750.0419.95011.333751.1627.45035.233750.1219.65010.350751.1227.15034.142750.1820.10013.154751.2227.750						
749.6816,3502,821 750.70 24,00023,400 749.70 16,5003,150 750.72 24,15023,882 749.74 16,6503,482 750.74 24,30024,366 749.74 16,8504,153 750.76 24,45024,853 749.76 16,9504,153 750.78 24,60025,344 749.78 17,1004,494 750.80 24,75025,833 749.80 17,2504.837 750.82 24,90026,334 749.82 17,4005,184 750.84 25,05026,834 749.84 17,5505,534 750.86 25,20027,336 749.86 17,7005,886 750.88 25,55028,850 749.90 18,0006,600 750.92 25,65028,861 749.90 18,0007,326 750.96 25,95029,894 749.94 18,300 $7,326$ 750.98 26,10030,414 749.96 18,450 $7,694$ 750.98 26,10031,464 750.02 18,9008,814 751.02 26,40031,493 750.04 19,0509,193 751.06 26,70032,526 750.08 19,3509,962 751.10 27,00033,600 750.10 19,50010,350 751.12 27,75034,132 750.12 19,65011,333 751.16 27,45035,233 750.14 19,95011,533 751.22 27,75036,33,						
749.7016,5003,150750.7224,15023,882749.7216,6503,482750.7424,30024,366749.7416,8003,816750.7624,45024,853749.7616,9504,153750.7824,60025,344749.7817,1004,494750.8024,75025,837749.8017,2504,837750.8224,90026,334749.8217,4005,184750.8625,00027,336749.8417,5505,534750.8625,00028,350749.8617,7005,886750.8825,35028,851749.9018,0006,600750.9225,65028,851749.9118,1506,961750.9425,80029,376749.9218,1506,961750.9826,10030,414749.9318,6008,064751.0026,25030,938750.0018,7508,438751.0226,40031,464750.0218,9008,814751.0226,40031,464750.0319,3509,962751.1027,00033,602750.0619,2009,576751.0826,85033,062750.0619,95010,742751.1427,30034,686750.1619,95010,742751.1427,30034,686750.1619,95010,742751.1427,30036,634750.1619,95013,154751.2027,750		,				
749.7216,650 $3,482$ 750.74 $24,300$ $24,366$ 749.74 16,800 $3,816$ 750.76 $24,450$ $24,853$ 749.76 16,950 $4,153$ 750.78 $24,600$ $25,344$ 749.78 $17,100$ $4,494$ 750.80 $24,750$ $25,837$ 749.80 $17,250$ $4,837$ 750.82 $24,900$ $26,334$ 749.82 $17,400$ $5,184$ 750.84 $25,050$ $26,834$ 749.84 $17,550$ $5,534$ 750.86 $25,200$ $27,336$ 749.86 $17,700$ $5,886$ 750.90 $25,500$ $28,350$ 749.86 $17,700$ $5,886$ 750.92 $25,650$ $28,861$ 749.92 $18,150$ $6,961$ 750.92 $25,650$ $28,861$ 749.92 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.94 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.94 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.96 $18,450$ $7,694$ 750.98 $26,100$ $30,414$ 749.96 $18,950$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $19,950$ $9,962$ 751.10 $27,750$ $36,3362$ 750.04 $19,950$ $10,350$ 751.12 $27,150$ $34,482$ 750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $15,33$ 7						
749.7416,8003,816750.7624,45024,853749.7616,9504,153750.7824,60025,344749.7817,1004,494750.8024,75025,837749.8017,2504,837750.8224,90026,334749.8217,4005,184750.8224,90026,334749.8417,5505,534750.8625,20027,336749.8617,7005,886750.8825,35027,841749.8617,7005,886750.9225,65028,350749.9018,0006,601750.9425,80029,376749.9118,0007,694750.9826,10030,414749.9218,4507,694750.9826,10030,414749.9618,4507,694750.9826,10030,414749.9818,6008,064751.0026,25030,938750.0018,7508,438751.0226,40031,464750.0218,9008,814751.0426,55031,993750.0419,0509,193751.1627,00033,600750.1019,65010,742751.1427,30034,686750.1219,65010,742751.1427,30034,686750.1419,80011,333751.1627,75036,338750.2620,70013,566751.2227,90036,894750.2220,40012,344751.2027,75		,			,	
749.76 $16,950$ $4,153$ 750.78 $24,600$ $25,344$ 749.80 $17,250$ $4,837$ 750.80 $24,750$ $25,837$ 749.80 $17,250$ $4,837$ 750.82 $24,900$ $26,334$ 749.82 $17,400$ $5,184$ 750.84 $25,050$ $26,334$ 749.84 $17,550$ $5,534$ 750.86 $25,200$ $27,336$ 749.86 $17,700$ $5,886$ 750.88 $25,350$ $27,841$ 749.86 $17,700$ $5,886$ 750.92 $25,500$ $28,850$ 749.90 $18,000$ $6,600$ 750.92 $25,650$ $28,861$ 749.92 $18,150$ $6,961$ 750.94 $25,950$ $29,894$ 749.94 $18,300$ $7,326$ 750.98 $26,100$ $30,414$ 749.94 $18,300$ $7,694$ 750.98 $26,100$ $30,414$ 749.96 $18,450$ $7,694$ 751.00 $26,550$ $31,933$ 750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,962$ 751.10 $27,000$ $33,600$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,850$ $11,533$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.12 $27,750$ $36,338$ 750.24 $20,250$ $12,348$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749.7817,1004,494750.8024,75025,837 749.80 17,2504,837750.8224,90026,334 749.82 17,4005,184750.8425,05026,834 749.84 17,5505,534750.8625,20027,336 749.86 17,7005,886750.8825,50028,350 749.86 17,7006,601750.9225,65028,861 749.90 18,0006,600750.9225,65028,861 749.94 18,3007,326750.9625,95029,894 749.94 18,3007,694750.9826,10030,414 749.96 18,4507,694750.9826,10030,414 749.96 18,4507,694751.0226,40031,464 750.02 18,9008,814751.0226,40031,464 750.02 18,9008,814751.0426,55033,062 750.06 19,2009,576751.0826,85033,062 750.10 19,65010,742751.1227,15034,142 750.12 19,65010,742751.1227,5036,338 750.24 20,55013,154751.2027,75036,338 750.24 20,55013,154751.2227,90036,894 750.24 20,55013,154751.3028,50039,150 750.32 21,15014,420751.3228,65039,722 750.32 21,150<						
749.80 $17,250$ $4,837$ 750.82 $24,900$ $26,334$ 749.82 $17,400$ $5,184$ 750.84 $25,050$ $26,834$ 749.84 $17,550$ $5,534$ 750.86 $25,200$ $27,336$ 749.86 $17,700$ $5,886$ 750.88 $25,350$ $27,841$ 749.88 $17,850$ $6,241$ 750.90 $25,500$ $28,350$ 749.90 $18,000$ $6,600$ 750.92 $25,650$ $28,861$ 749.92 $18,150$ $6,961$ 750.94 $25,800$ $29,376$ 749.94 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.94 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.94 $18,300$ $7,326$ 750.98 $26,100$ $30,414$ 749.98 $18,600$ $8,064$ 751.00 $26,250$ $30,938$ 750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.08 $19,350$ $9,962$ 751.10 $27,000$ $33,600$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,950$ $11,533$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749.82 $17,400$ $5,184$ 750.84 $25,050$ $26,834$ 749.84 $17,550$ $5,534$ 750.86 $25,200$ $27,336$ 749.86 $17,700$ $5,886$ 750.88 $25,500$ $28,350$ 749.98 $17,850$ $6,241$ 750.90 $25,500$ $28,350$ 749.90 $18,000$ $6,600$ 750.92 $25,650$ $28,861$ 749.92 $18,150$ $6,961$ 750.94 $25,800$ $29,376$ 749.94 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.96 $18,450$ $7,694$ 750.98 $26,100$ $30,414$ 749.98 $18,600$ $8,064$ 751.00 $26,250$ $30,938$ 750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.06 $19,200$ $9,576$ 751.10 $27,450$ $35,233$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.22 $20,250$ $12,338$ 751.22 $27,900$ $36,934$ 750.24 $20,550$ $13,981$ 751.30 $28,500$ $39,150$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,500$ $13,981$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
749.84 $17,550$ $5,534$ 750.86 $25,200$ $27,336$ 749.86 $17,700$ $5,886$ 750.88 $25,350$ $27,841$ 749.88 $17,850$ $6,241$ 750.90 $25,650$ $28,350$ 749.90 $18,000$ $6,600$ 750.92 $25,650$ $28,861$ 749.92 $18,150$ $6,961$ 750.94 $25,800$ $29,376$ 749.94 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.94 $18,300$ $7,326$ 750.98 $26,100$ $30,414$ 749.94 $18,600$ $8,064$ 751.00 $26,250$ $30,938$ 750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.06 $19,200$ $9,576$ 751.18 $26,850$ $33,062$ 750.10 $19,500$ $10,350$ 751.12 $27,750$ $34,486$ 750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.22 $27,900$ $36,894$ 750.24 $20,550$ $13,154$ 751.32 $28,650$ $39,150$ 750.32 $21,150$ $14,400$ 751.32 $28,650$ $39,150$ 750.34 $21,300$ $15,246$ <						,
749.86 $17,700$ $5,886$ 750.88 $25,350$ $27,841$ 749.88 $17,850$ $6,241$ 750.90 $25,500$ $28,350$ 749.90 $18,000$ $6,600$ 750.92 $25,650$ $28,861$ 749.92 $18,150$ $6,961$ 750.94 $25,800$ $29,376$ 749.94 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.94 $18,300$ $7,694$ 750.98 $26,100$ $30,414$ 749.98 $18,600$ $8,064$ 751.02 $26,400$ $31,464$ 750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.06 $19,200$ $9,576$ 751.10 $27,000$ $33,600$ 750.10 $19,650$ $10,742$ 751.16 $27,450$ $35,233$ 750.14 $19,800$ $11,533$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.22 $20,400$ $12,744$ 751.20 $27,750$ $36,338$ 750.24 $20,550$ $13,154$ 751.30 $28,850$ $39,722$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$,				
749.88 $17,850$ $6,241$ 750.90 $25,500$ $28,350$ 749.90 $18,000$ $6,600$ 750.92 $25,650$ $28,861$ 749.92 $18,150$ $6,961$ 750.94 $25,800$ $29,376$ 749.94 $18,300$ $7,326$ 750.96 $25,950$ $29,894$ 749.96 $18,450$ $7,694$ 750.98 $26,100$ $30,414$ 749.98 $18,600$ $8,064$ 751.00 $26,250$ $30,938$ 750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.06 $19,200$ $9,576$ 751.08 $26,850$ $33,062$ 750.10 $19,500$ $10,350$ 751.12 $27,150$ $34,142$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,950$ $11,533$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.22 $27,600$ $35,784$ 750.22 $20,400$ $12,744$ 751.22 $27,750$ $36,338$ 750.22 $20,400$ $12,744$ 751.22 $27,600$ $35,784$ 750.24 $20,550$ $13,154$ 751.30 $28,500$ $39,150$ 750.32 $21,150$ $14,822$ 751.30 $28,650$ $39,722$ 750.32 $21,150$ $14,822$						
749.9018,0006,600 750.92 25,65028,861 749.92 18,1506,961 750.94 25,80029,376 749.94 18,300 $7,326$ 750.96 25,95029,894 749.96 18,450 $7,694$ 750.98 26,10030,414 749.98 18,6008,064 751.00 26,25030,938 750.00 18,7508,438 751.02 26,40031,464 750.02 18,9008,814 751.04 26,55031,993 750.04 19,0509,193 751.06 26,70032,526 750.06 19,2009,576 751.08 26,85033,062 750.08 19,3509,962 751.10 27,00033,600 750.10 19,50010,350 751.12 27,15034,142 750.12 19,65010,742 751.14 27,30034,686 750.14 19,95011,533 751.18 27,60035,784 750.20 20,25012,338 751.22 27,90036,894 750.22 20,40012,744751.2428,05037,454 750.28 20,85013,981 751.30 28,65039,722 750.32 21,15014,822 751.34 28,80040,296 750.34 21,45015,674 751.38 29,10041,454 750.38 21,60016,104 751.42 29,40042,624 750.42 21,90016,974 751.34 28,8503						
749.9218,1506,961 750.94 $25,800$ $29,376$ 749.94 18,300 $7,326$ 750.96 $25,950$ $29,894$ 749.96 18,450 $7,694$ 750.98 $26,100$ $30,414$ 749.98 18,600 $8,064$ 751.00 $26,250$ $30,938$ 750.00 18,750 $8,438$ 751.02 $26,400$ $31,464$ 750.02 18,900 $8,814$ 751.04 $26,550$ $31,993$ 750.04 19,050 $9,193$ 751.06 $26,700$ $32,526$ 750.06 19,200 $9,576$ 751.08 $26,850$ $33,062$ 750.10 19,550 $9,962$ 751.10 $27,000$ $33,600$ 750.10 19,500 $10,350$ 751.12 $27,150$ $34,142$ 750.12 19,650 $10,742$ 751.14 $27,300$ $34,686$ 750.14 19,950 $11,533$ 751.18 $27,600$ $35,784$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.26 $28,200$ $38,016$ 750.30 $21,000$ $13,566$ 751.28 $28,350$ $38,581$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $39,722$ 750.36 $21,450$ $15,674$ 751.38 $29,100$ $41,454$ 750.36 $21,450$ $15,674$ 751.38 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
749.9418,300 $7,326$ 750.96 $25,950$ $29,894$ 749.96 18,450 $7,694$ 750.98 $26,100$ $30,414$ 749.98 18,600 $8,064$ 751.00 $26,250$ $30,938$ 750.00 18,750 $8,438$ 751.02 $26,400$ $31,464$ 750.02 18,900 $8,814$ 751.04 $26,550$ $31,993$ 750.04 19,050 $9,193$ 751.06 $26,700$ $32,526$ 750.06 19,200 $9,576$ 751.08 $26,850$ $33,062$ 750.10 19,350 $9,962$ 751.10 $27,000$ $33,600$ 750.12 19,650 $10,742$ 751.14 $27,150$ $34,142$ 750.14 19,800 $11,36$ 751.16 $27,450$ $35,233$ 750.16 19,950 $11,533$ 751.18 $27,600$ $35,784$ 750.22 20,400 $12,744$ 751.20 $27,750$ $36,338$ 750.24 20,550 $13,566$ 751.28 $28,200$ $38,016$ 750.24 20,550 $13,981$ 751.30 $28,650$ $39,722$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.36 $21,450$ $16,537$ 751.44 $29,550$ $42,037$ 750.34 $21,900$ $16,974$ 751.44						
749.96 $18,450$ $7,694$ 750.98 $26,100$ $30,414$ 749.98 $18,600$ $8,064$ 751.00 $26,250$ $30,938$ 750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.02 $26,400$ $31,464$ 750.04 $19,050$ $9,193$ 751.06 $26,570$ $32,526$ 750.06 $19,200$ $9,576$ 751.08 $26,850$ $33,062$ 750.08 $19,350$ $9,962$ 751.10 $27,000$ $33,600$ 750.10 $19,500$ $10,350$ 751.12 $27,150$ $34,142$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,800$ $11,363$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.22 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.26 $20,700$ $13,566$ 751.28 $28,350$ $39,150$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.34 $21,500$ $15,674$ 751.36 $28,950$ $40,874$ 750.36 $21,450$ $15,674$ 751.38 $29,100$ $41,454$ 750.38 $21,600$ $16,$	749.92	18,150	6,961	750.94	25,800	29,376
749.9818,6008,064751.0026,25030,938 750.00 18,7508,438 751.02 26,40031,464 750.02 18,9008,814 751.04 26,55031,993 750.04 19,0509,193 751.06 26,70032,526 750.06 19,2009,576 751.08 26,85033,062 750.08 19,3509,962 751.10 27,00033,600 750.10 19,50010,350 751.12 27,15034,142 750.12 19,65010,742 751.14 27,30034,686 750.14 19,95011,533 751.18 27,60035,784 750.20 20,25012,338 751.22 27,90036,894 750.22 20,40012,744 751.24 28,05037,454 750.24 20,55013,154 751.30 28,50039,150 750.30 21,00014,400 751.32 28,65039,722 750.34 21,30015,246 751.34 28,80040,296 750.34 21,30015,246 751.36 28,95040,874 750.36 21,45015,674 751.38 29,10041,454 750.34 21,45015,674 751.42 29,40042,624 750.44 22,05017,414 751.46 29,70043,806 750.46 22,20017,856 751.48 29,85044,402 750.48 22,35018,302 751.50 30,000 <td< td=""><td>749.94</td><td>18,300</td><td>7,326</td><td>750.96</td><td>25,950</td><td>29,894</td></td<>	749.94	18,300	7,326	750.96	25,950	29,894
750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.06 $19,200$ $9,576$ 751.08 $26,850$ $33,062$ 750.08 $19,350$ $9,962$ 751.10 $27,000$ $33,600$ 750.10 $19,500$ $10,350$ 751.12 $27,150$ $34,142$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.22 $20,100$ $12,744$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.24 $28,050$ $37,454$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.30 $21,000$ $14,420$ 751.36 $28,950$ $40,874$ 750.36 $21,450$ $15,674$ 751.38 $29,100$ $41,454$ 750.38 $21,600$ $16,104$ 751.42 $29,400$ $42,624$ 750.44 $22,050$ $17,414$ 751.46 $29,700$ $43,806$ 750.46 $22,200$ 1	749.96	18,450	7,694	750.98	26,100	30,414
750.00 $18,750$ $8,438$ 751.02 $26,400$ $31,464$ 750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.06 $19,200$ $9,576$ 751.08 $26,850$ $33,062$ 750.08 $19,350$ $9,962$ 751.10 $27,000$ $33,600$ 750.10 $19,500$ $10,350$ 751.12 $27,150$ $34,142$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.22 $20,100$ $12,744$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.24 $28,050$ $37,454$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.30 $21,000$ $14,420$ 751.36 $28,950$ $40,874$ 750.36 $21,450$ $15,674$ 751.38 $29,100$ $41,454$ 750.38 $21,600$ $16,104$ 751.42 $29,400$ $42,624$ 750.44 $22,050$ $17,414$ 751.46 $29,700$ $43,806$ 750.46 $22,200$ 1			8,064			
750.02 $18,900$ $8,814$ 751.04 $26,550$ $31,993$ 750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.06 $19,200$ $9,576$ 751.08 $26,850$ $33,062$ 750.08 $19,350$ $9,962$ 751.10 $27,000$ $33,600$ 750.10 $19,500$ $10,350$ 751.12 $27,150$ $34,142$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.24 $28,050$ $37,454$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.36 $21,450$ $15,674$ 751.34 $28,950$ $40,874$ 750.34 $21,600$ $16,104$ 751.42 $29,400$ $42,624$ 750.44 $22,050$ $17,414$ 751.46 $29,700$ $43,806$ 750.46 $22,200$						
750.04 $19,050$ $9,193$ 751.06 $26,700$ $32,526$ 750.06 $19,200$ $9,576$ 751.08 $26,850$ $33,062$ 750.08 $19,350$ $9,962$ 751.10 $27,000$ $33,600$ 750.10 $19,500$ $10,350$ 751.12 $27,150$ $34,142$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,950$ $11,333$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.26 $28,200$ $38,016$ 750.24 $20,550$ $13,154$ 751.30 $28,500$ $39,150$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.38 $21,600$ $16,104$ 751.42 $29,400$ $42,624$ 750.44 $22,050$ $17,414$ 751.44 $29,550$ $43,214$ 750.44 $22,050$ $17,644$ 751.48 $29,850$ $44,402$ 750.48 $22,350$ $18,302$ 751.50 $30,000$ $45,000$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
750.08 $19,350$ $9,962$ 751.10 $27,000$ $33,600$ 750.10 $19,500$ $10,350$ 751.12 $27,150$ $34,142$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.26 $28,200$ $38,016$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.26 $20,700$ $13,566$ 751.28 $28,350$ $38,581$ 750.28 $20,850$ $13,981$ 751.30 $28,650$ $39,722$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.38 $21,600$ $16,104$ 751.40 $29,250$ $42,037$ 750.40 $21,750$ $16,537$ 751.44 $29,550$ $43,214$ 750.42 $21,900$ $16,974$ 751.46 $29,700$ $43,806$ 750.44 $22,050$ $17,414$ 751.46 $29,700$ $43,806$ 750.48 $22,350$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
750.10 $19,500$ $10,350$ 751.12 $27,150$ $34,142$ 750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.26 $28,200$ $38,016$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.26 $20,700$ $13,566$ 751.28 $28,350$ $39,150$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.36 $21,450$ $15,674$ 751.36 $28,950$ $40,874$ 750.38 $21,600$ $16,104$ 751.42 $29,400$ $42,624$ 750.40 $21,750$ $16,537$ 751.44 $29,550$ $43,214$ 750.44 $22,050$ $17,414$ 751.46 $29,700$ $43,806$ 750.48 $22,350$ $18,302$ 751.50 $30,000$ $45,000$						
750.12 $19,650$ $10,742$ 751.14 $27,300$ $34,686$ 750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.24 $28,050$ $37,454$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.26 $20,700$ $13,566$ 751.28 $28,350$ $39,150$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.38 $21,600$ $16,104$ 751.40 $29,250$ $42,037$ 750.40 $21,750$ $16,537$ 751.42 $29,400$ $42,624$ 750.42 $21,900$ $16,974$ 751.44 $29,550$ $43,214$ 750.44 $22,050$ $17,414$ 751.46 $29,700$ $43,806$ 750.48 $22,350$ $18,302$ 751.50 $30,000$ $45,000$						
750.14 $19,800$ $11,136$ 751.16 $27,450$ $35,233$ 750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.24 $28,050$ $37,454$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.26 $20,700$ $13,566$ 751.28 $28,350$ $38,581$ 750.28 $20,850$ $13,981$ 751.30 $28,500$ $39,150$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.38 $21,600$ $16,104$ 751.42 $29,400$ $42,624$ 750.40 $21,750$ $16,537$ 751.42 $29,400$ $42,624$ 750.42 $21,900$ $16,974$ 751.44 $29,550$ $43,214$ 750.44 $22,050$ $17,414$ 751.48 $29,850$ $44,402$ 750.48 $22,350$ $18,302$ 751.50 $30,000$ $45,000$						
750.16 $19,950$ $11,533$ 751.18 $27,600$ $35,784$ 750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.24 $28,050$ $37,454$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.26 $20,700$ $13,566$ 751.28 $28,350$ $38,581$ 750.28 $20,850$ $13,981$ 751.30 $28,500$ $39,150$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,950$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.36 $21,450$ $15,674$ 751.38 $29,100$ $41,454$ 750.38 $21,600$ $16,104$ 751.42 $29,400$ $42,624$ 750.40 $21,750$ $16,537$ 751.42 $29,400$ $42,624$ 750.42 $21,900$ $16,974$ 751.44 $29,550$ $43,214$ 750.44 $22,050$ $17,414$ 751.46 $29,700$ $43,806$ 750.48 $22,350$ $18,302$ 751.50 $30,000$ $45,000$						
750.18 $20,100$ $11,934$ 751.20 $27,750$ $36,338$ 750.20 $20,250$ $12,338$ 751.22 $27,900$ $36,894$ 750.22 $20,400$ $12,744$ 751.24 $28,050$ $37,454$ 750.24 $20,550$ $13,154$ 751.26 $28,200$ $38,016$ 750.26 $20,700$ $13,566$ 751.28 $28,350$ $39,150$ 750.38 $20,850$ $13,981$ 751.30 $28,650$ $39,150$ 750.30 $21,000$ $14,400$ 751.32 $28,650$ $39,722$ 750.32 $21,150$ $14,822$ 751.34 $28,800$ $40,296$ 750.34 $21,300$ $15,246$ 751.36 $28,950$ $40,874$ 750.36 $21,450$ $15,674$ 751.38 $29,100$ $41,454$ 750.38 $21,600$ $16,104$ 751.42 $29,400$ $42,624$ 750.40 $21,750$ $16,537$ 751.42 $29,400$ $42,624$ 750.42 $21,900$ $16,974$ 751.44 $29,550$ $43,214$ 750.44 $22,050$ $17,414$ 751.46 $29,700$ $43,806$ 750.46 $22,200$ $17,856$ 751.48 $29,850$ $44,402$ 750.48 $22,350$ $18,302$ 751.50 $30,000$ $45,000$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
750.3021,00014,400751.3228,65039,722750.3221,15014,822751.3428,80040,296750.3421,30015,246751.3628,95040,874750.3621,45015,674751.3829,10041,454750.3821,60016,104751.4029,25042,037750.4021,75016,537751.4229,40042,624750.4221,90016,974751.4429,55043,214750.4422,05017,414751.4629,70043,806750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000						
750.3221,15014,822751.3428,80040,296750.3421,30015,246751.3628,95040,874750.3621,45015,674751.3829,10041,454750.3821,60016,104751.4029,25042,037750.4021,75016,537751.4229,40042,624750.4221,90016,974751.4429,55043,214750.4422,05017,414751.4629,70043,806750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000						
750.3421,30015,246751.3628,95040,874750.3621,45015,674751.3829,10041,454750.3821,60016,104751.4029,25042,037750.4021,75016,537751.4229,40042,624750.4221,90016,974751.4429,55043,214750.4422,05017,414751.4629,70043,806750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000						
750.3621,45015,674751.3829,10041,454750.3821,60016,104751.4029,25042,037750.4021,75016,537751.4229,40042,624750.4221,90016,974751.4429,55043,214750.4422,05017,414751.4629,70043,806750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000					,	
750.3821,60016,104751.4029,25042,037750.4021,75016,537751.4229,40042,624750.4221,90016,974751.4429,55043,214750.4422,05017,414751.4629,70043,806750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000						
750.4021,75016,537751.4229,40042,624750.4221,90016,974751.4429,55043,214750.4422,05017,414751.4629,70043,806750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000						
750.4221,90016,974751.4429,55043,214750.4422,05017,414751.4629,70043,806750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000						
750.4422,05017,414751.4629,70043,806750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000						
750.4622,20017,856751.4829,85044,402750.4822,35018,302751.50 30,00045,000						
750.48 22,350 18,302 751.50 30,000 45,000						
750.50 22,500 18,750				751.50	30,000	45,000
	750.50	22,500	18,750			


Summary for Pond B-3: Bioretention B-3

Inflow Area = 5.321 ac, 76.83% Impervious, Inflow Depth = 2.50" for 10-yr event Inflow = 21.28 cfs @ 11.96 hrs, Volume= 1.106 af Outflow = 3.60 cfs @ 12.17 hrs, Volume= 0.952 af, Atten= 83%, Lag= 12.4 min Primary = 3.60 cfs @ 12.17 hrs, Volume= 0.952 af								
	Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 751.43' @ 12.17 hrs Surf.Area= 20,593 sf Storage= 23,338 cf							
	Plug-Flow detention time= 147.8 min calculated for 0.952 af (86% of inflow) Center-of-Mass det. time= 82.3 min(866.7 - 784.4)							
Volume	Invert	Avail.Stor	rage Storage Description					
#1	750.00'	36,00	00 cf Surf. Storage (Prismatic) Listed below (Recalc)					
		,						
Elevatio	on Surf	.Area	Inc.Store Cum.Store					
(fee	et) (sq-ft)	(cubic-feet) (cubic-feet)					
750.0	0 1	2,000	0 0					
752.0		4,000	36,000 36,000					
		,	,					
Device	Routing	Invert	Outlet Devices					
#1	Primary	746.50'	8.0" Round Culvert-Primary					
,			L= 30.0' CPP, square edge headwall, Ke= 0.500					
Inlet / Outlet Invert= 746.50' / 746.00' S= 0.0167 '/' Cc= 0.900								
			n= 0.012, Flow Area= 0.35 sf					
#2	Device 1	750.50'	24.0" x 24.0" Horiz. Grate-Primary C= 0.600					
			Limited to weir flow at low heads					
#3	Primary	751.50'						
Primary OutFlow Max=3.60 cfs @ 12.17 hrs HW=751.43' TW=0.00' (Dynamic Tailwater)								
1 −1=Cu	Ivert-Primary	(Inlet Cont	trols 3.60 cfs @ 10.32 fps)					
—2=Grate-Primary (Passes 3.60 cfs of 18.58 cfs potential flow)								

2=Grate-Primary (Passes 3.60 cfs of 18.58 cfs potential flow) -**3=Sharp-Crested Rectangular Weir** (Controls 0.00 cfs)

Page 48

Proposed Conditions I

Pond B-3: Bioretention B-3

Proposed Conditions ITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

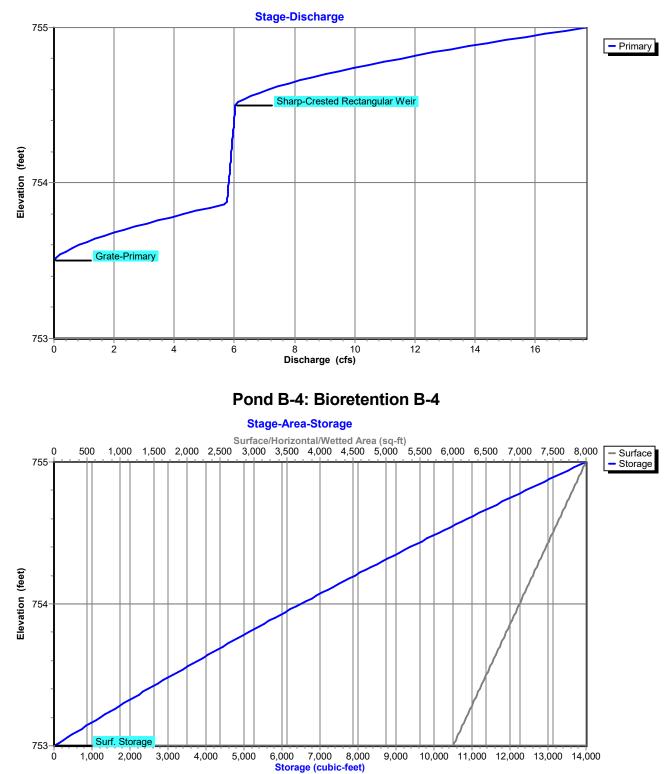
Proposed Conditions - I Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 50

Stage-Discharge for Pond B-3: Bioretention B-3

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
					3.44		
750.00	0.00 0.00	750.51 750.52	0.03 0.07	751.02		751.53	3.81
750.01				751.03	3.44	751.54	3.91
750.02 750.03	0.00	750.53	0.14	751.04	3.45	751.55	4.01
	0.00	750.54	0.21	751.05	3.45	751.56	4.13
750.04	0.00	750.55	0.29	751.06	3.46	751.57	4.26
750.05	0.00	750.56	0.38	751.07	3.46	751.58	4.40
750.06	0.00	750.57	0.48	751.08	3.46	751.59	4.55
750.07	0.00	750.58	0.59	751.09	3.47	751.60	4.70
750.08	0.00	750.59	0.71	751.10	3.47	751.61	4.86
750.09	0.00	750.60	0.83	751.11	3.48	751.62	5.03
750.10	0.00	750.61	0.95	751.12	3.48	751.63	5.21
750.11	0.00	750.62	1.09	751.13	3.48	751.64	5.39
750.12	0.00	750.63	1.23	751.14	3.49	751.65	5.58
750.13	0.00	750.64	1.37	751.15	3.49	751.66	5.78
750.14	0.00	750.65	1.52	751.16	3.50	751.67	5.98
750.15	0.00	750.66	1.67	751.17	3.50	751.68	6.19
750.16	0.00	750.67	1.83	751.18	3.50	751.69	6.40
750.17	0.00	750.68	2.00	751.19	3.51	751.70	6.62
750.18	0.00	750.69	2.17	751.20	3.51	751.71	6.84
750.19	0.00	750.70	2.34	751.21	3.52	751.72	7.07
750.20	0.00	750.71	2.52	751.22	3.52	751.73	7.31
750.21	0.00	750.72	2.70	751.23	3.52	751.74	7.55
750.22	0.00	750.73	2.89	751.24	3.53	751.75	7.79
750.23	0.00	750.74	3.08	751.25	3.53	751.76	8.04
750.24	0.00	750.75	3.27	751.26	3.54	751.77	8.29
750.25	0.00	750.76	3.33	751.27	3.54	751.78	8.55
750.26	0.00	750.77	3.33	751.28	3.54	751.79	8.81
750.27	0.00	750.78	3.34	751.29	3.55	751.80	9.08
750.28	0.00	750.79	3.34	751.30	3.55	751.81	9.35
750.29	0.00	750.80	3.35	751.31	3.56	751.82	9.63
750.30	0.00	750.81	3.35	751.32	3.56	751.83	9.91
750.31	0.00	750.82	3.36	751.33	3.56	751.84	10.19
750.32	0.00	750.83	3.36	751.34	3.57	751.85	10.48
750.33	0.00	750.84	3.36	751.35	3.57	751.86	10.78
750.34	0.00	750.85	3.37	751.36	3.58	751.87	11.07
750.35	0.00	750.86	3.37	751.37	3.58	751.88	11.37
750.36	0.00	750.87	3.38	751.38	3.58	751.89	11.68
750.37	0.00	750.88	3.38	751.39	3.59	751.90	11.98
750.38	0.00	750.89	3.39	751.40	3.59	751.91	12.30
750.39	0.00	750.90	3.39	751.41	3.60	751.92	12.61
750.40	0.00	750.91	3.39	751.42	3.60	751.93	12.93
750.41	0.00	750.92	3.40	751.43	3.60	751.94	13.25
750.42	0.00	750.93	3.40	751.44	3.61	751.95	13.58
750.43	0.00	750.94	3.41	751.45	3.61	751.96	13.91
750.44	0.00	750.95	3.41	751.46	3.62	751.97	14.24
750.45	0.00	750.96	3.41	751.47	3.62	751.98	14.58
750.46	0.00	750.97	3.42	751.48	3.62	751.99	14.92
750.47	0.00	750.98	3.42	751.49	3.63	752.00	15.26
750.48	0.00	750.99	3.43	751.50	3.63		
750.49	0.00	751.00	3.43	751.51	3.67		
750.50	0.00	751.01	3.43	751.52	3.73		
		l		l			

Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-3: Bioretention B-3


		•	I		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
750.00	12,000	0	751.02	18,120	15,361
750.02	12,120	241	751.04	18,240	15,725
750.04	12,240	485	751.06	18,360	16,091
750.06	12,360	731	751.08	18,480	16,459
750.08	12,480	979	751.10	18,600	16,830
750.10	12,600	1,230	751.12	18,720	17,203
750.12	12,720	1,483	751.14	18,840	17,579
750.14	12,840	1,739	751.16	18,960	17,957
750.16	12,960	1,997	751.18	19,080	18,337
750.18	13,080	2,257	751.20	19,200	18,720
750.20	13,200	2,520	751.22	19,320	19,105
750.22	13,320	2,320	751.22	19,440	19,493
750.24	13,440	3,053	751.26	19,560	19,883
750.26	13,560	3,323	751.28	19,680	20,275
750.28	13,680	3,595	751.30	19,800	20,670
750.30	13,800	3,870	751.32	19,920	21,067
750.32	13,920	4,147	751.34	20,040	21,467
750.34	14,040	4,427	751.36	20,160	21,869
750.36	14,160	4,709	751.38	20,280	22,273
750.38	14,280	4,993	751.40	20,400	22,680
750.40	14,400	5,280	751.42	20,520	23,089
750.42	14,520	5,569	751.44	20,640	23,501
750.44	14,640	5,861	751.46	20,760	23,915
750.46	14,760	6,155	751.48	20,880	24,331
750.48	14,880	6,451	751.50	21,000	24,750
750.50	15,000	6,750	751.52	21,120	25,171
750.52	15,120	7,051	751.54	21,240	25,595
750.54	15,240	7,355	751.56	21,360	26,021
750.56	15,360	7,661	751.58	21,480	26,449
750.58	15,480	7,969	751.60	21,600	26,880
750.60	15,600	8,280	751.62	21,720	27,313
750.62	15,720	8,593	751.64	21,840	27,749
750.64	15,840	8,909	751.66	21,960	28,187
750.66	15,960	9,227	751.68	22,080	28,627
750.68	16,080	9,547	751.70	22,200	29,070
750.70	16,200	9,870	751.72	22,320	29,515
750.72	16,320	10,195	751.74	22,440	29,963
750.74	16,440	10,523	751.76	22,560	30,413
750.76	16,560	10,853	751.78	22,680	30,865
750.78	16,680	11,185	751.80	22,800	31,320
750.80	16,800	11,520	751.82	22,920	31,777
750.82	16,920	11,857	751.84	23,040	32,237
750.84	17,040	12,197	751.86	23,160	32,699
750.86	17,160	12,539	751.88	23,280	33,163
750.88	17,100	12,883	751.90	23,200	33,630
750.90			751.90	23,520	34,099
	17,400	13,230			,
750.92	17,520	13,579	751.94	23,640	34,571
750.94	17,640	13,931	751.96	23,760	35,045
750.96	17,760	14,285	751.98	23,880	35,521
750.98	17,880	14,641	752.00	24,000	36,000
751.00	18,000	15,000			
			I		

Summary for Pond B-4: Bioretention B-4

Inflow Area = 2.572 ac, 78.93% Impervious, Inflow Depth = 2.50" for 10-yr event Inflow = 10.29 cfs @ 11.96 hrs, Volume= 0.535 af Outflow = 5.85 cfs @ 12.05 hrs, Volume= 0.463 af, Atten= 43%, Lag= 5.4 min Primary = 5.85 cfs @ 12.05 hrs, Volume= 0.463 af								
	Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 754.09' @ 12.05 hrs Surf.Area= 7,087 sf Storage= 7,113 cf							
Plug-Flow detention time= 111.0 min calculated for 0.463 af (87% of inflow) Center-of-Mass det. time= 48.5 min (832.8 - 784.4)								
	brage Storage Description							
#1 753.00' 14,0	00 cf Surf. Storage (Prismatic) Listed below (Recalc)							
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)							
753.00 6,000	0 0							
755.00 8,000	14,000 14,000							
Device Routing Invert	Outlet Devices							
#1 Primary 749.50'	12.0" Round Culvert-Primary							
-	L= 230.0' CPP, square edge headwall, Ke= 0.500							
	Inlet / Outlet Invert= 749.50' / 746.50' S= 0.0130 '/' Cc= 0.900							
	n= 0.012, Flow Area= 0.79 sf							
#2 Device 1 753.50'	,							
	Limited to weir flow at low heads							
#3 Primary 754.50'	10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)							
Primary OutFlow Max=5.85 cfs @ 12.05 hrs HW=754.08' TW=0.00' (Dynamic Tailwater) 1=Culvert-Primary (Barrel Controls 5.85 cfs @ 7.44 fps)								

1-2=Grate-Primary (Passes 5.85 cfs of 11.66 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Conditions I Prepared by Pinewoods Engineering, P.C.

Pond B-4: Bioretention B-4

Proposed Conditions IType II 24-hiPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 54

Stage-Discharge for Pond B-4: Bioretention B-4

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
753.00	0.00	753.51	0.03	754.02	5.82	754.53	6.21
753.01	0.00	753.52	0.07	754.03	5.82	754.54	6.31
753.02	0.00	753.53	0.14	754.04	5.83	754.55	6.41
753.03	0.00	753.54	0.21	754.05	5.83	754.56	6.53
753.04	0.00	753.55	0.29	754.06	5.84	754.57	6.66
753.05	0.00	753.56	0.38	754.07	5.84	754.58	6.80
753.06	0.00	753.57	0.48	754.08	5.84	754.59	6.95
753.07	0.00	753.58	0.59	754.09	5.85	754.60	7.10
753.08	0.00	753.59	0.71	754.10	5.85	754.61	7.27
753.09	0.00	753.60	0.83	754.11	5.86	754.62	7.44
753.10	0.00	753.61	0.95	754.12	5.86	754.63	7.61
753.11	0.00	753.62	1.09	754.13	5.87	754.64	7.80
753.12	0.00	753.63	1.23	754.14	5.87	754.65	7.99
753.13	0.00	753.64	1.37	754.15	5.88	754.66	8.18
753.14	0.00	753.65	1.52	754.16	5.88	754.67	8.38
753.15	0.00	753.66	1.67	754.17	5.88	754.68	8.59
753.16	0.00	753.67	1.83	754.18	5.89	754.69	8.81
753.17	0.00	753.68	2.00	754.19	5.89	754.70	9.03
753.18	0.00	753.69	2.17	754.20	5.90	754.71	9.25
753.19	0.00	753.70	2.34	754.21	5.90	754.72	9.48
753.20	0.00	753.71	2.52	754.22	5.91	754.73	9.72
753.21	0.00	753.72	2.70	754.23	5.91	754.74	9.96
753.22	0.00	753.73	2.89	754.24	5.91	754.75	10.20
753.23	0.00	753.74	3.08	754.25	5.92	754.76	10.45
753.24	0.00	753.75	3.27	754.26	5.92	754.77	10.71
753.25	0.00	753.76	3.47	754.27	5.93	754.78	10.96
753.26	0.00	753.77	3.67	754.28	5.93	754.79	11.23
753.27	0.00	753.78	3.88	754.29	5.94	754.80	11.50
753.28	0.00	753.79	4.09	754.30	5.94	754.81	11.77
753.29	0.00	753.80	4.30	754.31	5.95	754.82	12.05
753.30	0.00	753.81	4.52	754.32	5.95	754.83	12.33
753.31	0.00	753.82	4.74	754.33	5.95	754.84	12.61
753.32	0.00	753.83	4.96	754.34	5.96	754.85	12.90
753.33	0.00	753.84	5.19	754.35	5.96	754.86	13.19
753.34	0.00	753.85	5.42	754.36	5.97	754.87	13.49
753.35	0.00	753.86	5.65	754.37	5.97	754.88	13.79
753.36	0.00	753.87	5.75	754.38	5.98	754.89	14.10
753.37	0.00	753.88	5.75	754.39	5.98	754.90	14.40
753.38	0.00	753.89	5.76	754.40	5.98	754.91	14.72
753.39	0.00	753.90	5.76	754.41	5.99	754.92	15.03
753.40	0.00	753.91	5.77	754.42	5.99	754.93	15.35
753.41	0.00	753.92	5.77	754.43	6.00	754.94	15.67
753.42	0.00	753.93	5.78	754.44	6.00	754.95	16.00
753.43	0.00	753.94	5.78	754.45	6.01	754.96	16.33
753.44	0.00	753.95	5.79	754.46	6.01	754.97	16.66
753.45	0.00	753.96	5.79	754.47	6.01	754.98	17.00
753.46	0.00	753.97	5.80	754.48	6.02	754.99	17.34
753.47	0.00	753.98	5.80	754.49	6.02	755.00	17.68
753.48	0.00	753.99	5.80	754.50	6.03		
753.49	0.00	754.00	5.81	754.51	6.06		
753.50	0.00	754.01	5.81	754.52	6.13		
		l		I			

Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-4: Bioretention B-4

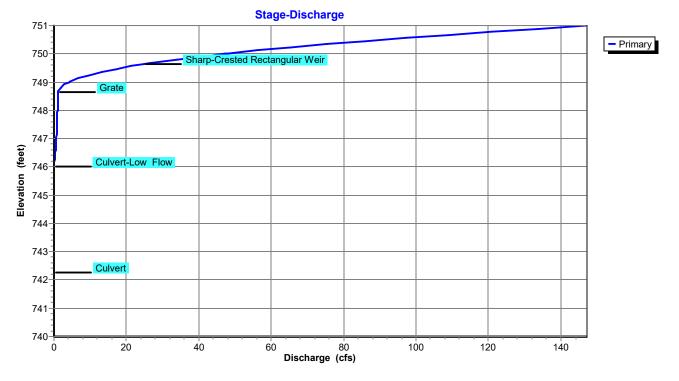
Clevalish Surace Surace Surace Surace Surace (feet) (sq-ft) (cubic-feet) (cubic-feet) (cubic-feet) 753.02 6.020 120 754.04 7.040 6.781 753.04 6.040 241 754.06 7.060 6.922 753.06 6.060 362 754.10 7.100 7.205 753.10 6.100 605 754.14 7.140 7.440 753.14 6.140 850 754.14 7.160 7.633 753.15 6.160 973 754.18 7.160 7.633 753.22 6.220 1.344 754.22 7.200 8.0645 753.23 6.260 1.794 754.26 7.260 8.354 753.34 6.340 2.098 754.32 7.320 8.645 753.24 6.240 1.469 754.42 7.240 8.209 753.38 6.380 2.225 784.38 7.380 9.2	Elevation	Surface	Storage	Elevation	Surface	Storage
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
753.02 $6,020$ 120754.047,040 $6,781$ 753.04 $6,040$ 241754.067,060 $6,922$ 753.06 $6,060$ 362754.087,0807,063753.08 $6,080$ 483754.107,1007,205753.10 $6,100$ 605754.127,1207,347753.12 $6,120$ 727754.147,1407,430753.16 $6,160$ 973754.187,1807,776753.20 $6,200$ 1,220754.227,2208,064753.22 $6,200$ 1,244754.247,2408,209753.24 $6,240$ 1,469754.227,2208,064753.25 $6,260$ 1,594754.327,3208,791753.36 $6,300$ 1,845754.327,3208,791753.37 $6,320$ 1,971754.347,3408,938753.36 $6,360$ 2,225754.387,3809,232753.38 $6,380$ 2,352754.407,4009,528753.44 $6,440$ 2,737754.467,4609,826753.45 $6,520$ 3,255754.527,52010,275753.54 $6,660$ 3,780754.527,52010,275753.54 $6,540$ 3,366754.457,6601,080753.46 $6,660$ 3,780754.527,52010,275753.55 $6,520$ 3,255754.547,54010,426 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
753.04 6.040 241 754.067.060 6.922 753.06 6.060 362 754.087.0807.063753.10 6.100 605 754.127.1007.205753.12 6.120 7.27754.147.1407.490753.14 6.140 850 754.167.1607.633753.16 6.160 973754.187.1807.776753.18 6.180 1.996754.227.2007.920753.20 6.200 1.220754.227.2408.209753.24 6.240 1.469754.267.2608.354753.30 6.260 1.594754.287.2808.499753.24 6.240 1.469754.227.3008.645753.30 6.300 1.845754.327.3008.645753.31 6.360 2.925754.367.3609.085753.32 6.320 1.971754.347.3408.393753.34 6.340 2.908754.427.4009.380753.42 6.420 2.608754.427.4009.380753.43 6.380 2.352754.437.4009.380753.44 6.440 2.737754.467.4609.826753.50 6.500 3.125754.527.50010.125753.51 6.520 3.265754.527.50010.275753.52 6.520 3.265754.527.6001.938 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.06 6.060 362 754.08 7.080 7.063 753.08 6.080 483 754.10 7.100 7.205 753.10 6.100 605 754.14 7.140 7.347 753.12 6.120 727 754.14 7.140 7.430 753.14 6.140 850 754.16 7.160 7.633 753.16 6.160 973 754.18 7.180 7.776 753.20 6.200 1.220 754.22 7.220 8.064 753.22 6.220 1.344 754.24 7.240 8.209 753.26 6.260 1.594 754.26 7.260 8.354 753.26 6.260 1.594 754.28 7.280 8.499 753.28 6.280 1.719 754.30 7.300 8.645 753.30 6.300 1.845 754.36 7.360 9.085 753.34 6.340 2.098 754.46 7.400 9.380 753.34 6.340 2.998 754.46 7.440 9.677 753.42 6.420 2.608 754.44 7.440 9.677 753.46 6.460 2.866 754.48 7.480 9.975 753.46 6.460 2.866 754.46 7.660 10.275 753.52 6.520 3.255 754.50 7.500 10.125 753.54 6.540 3.866 754.66 7.660 11.385 753.66 6.600 3.780						
753.08 6.080 483754.107.1007.205753.10 6.100 605 754.12 7.120 7.347 753.12 6.120 727 754.14 7.140 7.430 753.14 6.140 850 754.16 7.160 7.633 753.16 6.160 973 754.16 7.160 7.632 753.20 6.200 1.220 754.22 7.220 8.064 753.21 6.220 1.344 754.26 7.260 8.354 753.22 6.220 1.344 754.26 7.260 8.354 753.24 6.260 1.594 754.26 7.260 8.354 753.28 6.280 1.719 754.32 7.300 8.645 753.30 6.300 1.845 754.32 7.320 8.791 753.34 6.340 2.098 754.34 7.340 8.938 753.34 6.360 2.225 754.38 7.380 9.232 753.36 6.360 2.252 754.38 7.380 9.232 753.34 6.440 2.737 754.46 7.460 9.826 753.40 6.400 2.480 754.52 7.520 10.275 753.44 6.440 2.966 754.48 7.460 9.826 753.55 6.500 3.125 754.50 7.500 10.225 753.56 6.560 3.517 754.56 7.560 10.728 753.56 6.560 3.517 7						
753.10 $6,100$ 605 754.12 $7,120$ $7,347$ 753.12 $6,120$ 727 754.14 $7,140$ $7,490$ 753.14 $6,140$ 850 754.16 $7,160$ $7,633$ 753.16 $6,160$ 973 754.18 $7,180$ $7,776$ 753.18 $6,180$ 1.096 754.22 $7,220$ $7,920$ 753.20 $6,200$ $1,220$ 754.22 $7,240$ $8,209$ 753.24 $6,220$ $1,344$ 754.26 $7,260$ $8,354$ 753.26 $6,260$ $1,594$ 754.28 $7,260$ $8,354$ 753.26 $6,280$ $1,719$ 754.30 $7,300$ $8,645$ 753.30 $6,300$ $1,845$ 754.32 $7,320$ $8,791$ 753.34 $6,340$ 2.998 754.34 $7,340$ $8,938$ 753.34 $6,340$ 2.925 754.43 $7,360$ $9,085$ 753.36 $6,360$ 2.225 754.43 $7,400$ $9,528$ 753.46 $6,460$ $2,866$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.52 $7,520$ $10,275$ 753.54 $6,540$ $3,866$ 754.48 $7,640$ $1,826$ 753.46 $6,660$ $3,912$ 754.66 $7,600$ $10,225$ 753.52 $6,520$ $3,255$ 754.66 $7,660$ $11,382$		•				
753.12 $6,120$ 727754.14 $7,140$ $7,490$ 753.14 $6,140$ 850754.16 $7,160$ $7,633$ 753.16 $6,160$ 973754.18 $7,180$ $7,776$ 753.18 $6,180$ $1,096$ 754.20 $7,220$ $8,064$ 753.20 $6,200$ $1,220$ 754.22 $7,220$ $8,064$ 753.21 $6,220$ $1,344$ 754.26 $7,260$ $8,354$ 753.26 $6,260$ $1,594$ 754.28 $7,280$ $8,499$ 753.28 $6,280$ $1,719$ 754.30 $7,300$ $8,645$ 753.30 $6,300$ $1,845$ 754.32 $7,340$ $8,938$ 753.34 $6,340$ $2,098$ 754.36 $7,360$ $9,085$ 753.36 $6,360$ $2,225$ 754.40 $7,440$ $9,232$ 753.40 $6,400$ $2,480$ 754.42 $7,440$ $9,628$ 753.42 $6,420$ $2,666$ 754.44 $7,440$ $9,677$ 753.44 $6,460$ $2,866$ 754.45 $7,560$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.54 $6,540$ $3,386$ 754.56 $7,660$ $11,385$ 753.55 $6,560$ $3,517$ 754.66 $7,660$ $11,385$ 753.56 $6,580$ $3,517$ 754.66 $7,660$ $11,385$ 753.56 $6,660$ $4,178$ 754.66 $7,660$ $11,385$ 753.56 $6,680$ $3,517$ 754.66						
753.14 $6,140$ 850 754.16 $7,160$ $7,633$ 753.16 $6,160$ 973 754.18 $7,180$ $7,776$ 753.18 $6,180$ 1.096 754.20 $7,200$ $7,920$ 753.20 $6,220$ 1.344 754.22 $7,220$ $8,064$ 753.21 $6,220$ 1.344 754.26 $7,260$ $8,334$ 753.26 $6,260$ 1.594 754.26 $7,220$ $8,064$ 753.28 $6,280$ $1,719$ 754.32 $7,300$ $8,645$ 753.30 $6,300$ 1.845 754.32 $7,320$ $8,791$ 753.32 $6,320$ 1.971 754.34 $7,340$ $8,938$ 753.34 $6,340$ 2.098 754.36 $7,380$ $9,085$ 753.36 $6,660$ $2,225$ 754.38 $7,380$ $9,232$ 753.38 $6,380$ $2,352$ 754.40 $7,400$ $9,380$ 753.40 $6,400$ $2,460$ 754.42 $7,420$ $9,528$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,276$ 753.45 $6,500$ $3,125$ 754.54 $7,540$ $10,426$ 753.56 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.57 $6,560$ $3,517$ 754.66 $7,660$ $10,425$ 753.56 $6,560$ $3,517$ 754.66 $7,660$ $11,328$ 753.66 $6,660$ $4,178$ 754.66 $7,660$ $11,322$ 753.66 $6,660$ 4						
753.16 $6,160$ 973754.18 $7,180$ $7,776$ 753.18 $6,180$ 1.096 754.20 $7,200$ $7,920$ 753.20 $6,200$ 1.220 754.22 $7,220$ $8,064$ 753.22 $6,220$ 1.344 754.24 $7,240$ $8,209$ 753.24 $6,240$ 1.469 754.26 $7,260$ $8,354$ 753.26 $6,260$ 1.594 754.28 $7,280$ $8,499$ 753.26 $6,260$ 1.594 754.28 $7,320$ $8,791$ 753.30 $6,300$ 1.845 754.32 $7,320$ $8,791$ 753.32 $6,320$ 1.971 754.36 $7,360$ $9,085$ 753.36 $6,360$ 2.225 754.38 $7,380$ $9,232$ 753.38 $6,380$ $2,352$ 754.40 $7,400$ $9,380$ 753.40 $6,400$ $2,480$ 754.42 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.50 $6,560$ $3,517$ 754.66 $7,600$ $10,820$ 753.60 $6,660$ $3,780$ 754.72 $7,600$ $10,425$ 753.52 $6,520$ $3,255$ 754.54 $7,640$ $10,426$ 753.60 $6,660$ $3,780$ 754.66 $7,600$ $10,820$ 753.60 $6,660$ $3,$						
753.18 $6,180$ 1.096 754.20 7.200 7.920 753.20 $6,200$ 1.220 754.22 7.220 $8,064$ 753.22 $6,220$ 1.344 754.24 7.240 $8,209$ 753.24 $6,240$ 1.469 754.26 7.260 8.354 753.26 $6,260$ 1.594 754.28 7.280 $8,499$ 753.26 $6,280$ 1.719 754.30 7.300 $8,645$ 753.30 6.300 1.845 754.32 7.320 8.791 753.32 6.320 1.971 754.34 7.340 8.938 753.34 6.340 2.098 754.36 7.360 9.085 753.36 6.360 2.225 754.38 7.380 9.232 753.34 6.3400 2.480 754.42 7.420 9.528 753.42 6.420 2.608 754.44 7.440 9.677 753.44 6.4400 2.737 754.46 7.460 9.826 753.46 6.460 2.866 754.48 7.480 9.975 753.50 6.500 3.125 754.50 7.500 10.125 753.52 6.520 3.255 754.54 7.540 10.426 753.66 6.560 3.517 754.66 7.600 10.880 753.66 6.560 3.517 754.66 7.600 11.032 753.56 6.580 3.648 754.67 7.600 11.032 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.20 6.200 1.220 754.22 7.220 8.064 753.22 6.220 1.344 754.24 7.240 8.209 753.24 6.240 1.469 754.26 7.260 8.554 753.26 6.260 1.594 754.28 7.280 8.499 753.26 6.280 1.719 754.30 7.300 8.645 753.30 6.300 1.845 754.32 7.320 8.791 753.32 6.320 1.971 754.34 7.340 8.938 753.36 6.360 2.225 754.38 7.360 9.085 753.36 6.360 2.252 754.40 7.400 9.380 753.40 6.400 2.480 754.42 7.420 9.528 753.44 6.440 2.737 754.46 7.460 9.826 753.44 6.440 2.737 754.54 7.500 10.125 753.50 6.500 3.125 754.52 7.500 10.275 753.52 6.520 3.255 754.54 7.540 10.426 753.54 6.540 3.86 754.56 7.600 10.820 753.56 6.560 3.517 754.58 7.580 10.772 753.56 6.560 3.617 754.56 7.600 10.820 753.66 6.660 4.178 754.66 7.660 11.385 753.66 6.660 4.178 754.66 7.660 11.385 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.22 6.220 1.344 754.24 7.240 8.209 753.24 6.240 1.469 754.26 7.260 8.354 753.26 6.260 1.594 754.28 7.280 8.499 753.28 6.280 1.719 754.32 7.300 8.645 753.30 6.300 1.845 754.32 7.320 8.791 753.32 6.320 1.971 754.34 7.340 8.938 753.34 6.340 2.098 754.36 7.360 9.085 753.36 6.360 2.225 754.40 7.400 9.380 753.40 6.400 2.480 754.42 7.420 9.528 753.42 6.420 2.608 754.44 7.440 9.677 753.44 6.440 2.737 754.46 7.460 9.826 753.46 6.460 2.866 754.48 7.480 9.975 753.50 6.500 3.125 754.52 7.500 10.125 753.52 6.520 3.255 754.54 7.540 10.426 753.66 6.560 3.517 754.58 7.560 10.777 753.66 6.560 3.517 754.64 7.600 11.032 753.66 6.660 4.178 754.66 7.660 11.338 753.66 6.660 4.178 754.66 7.600 11.032 753.66 6.660 4.178 754.66 7.600 11.932 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.24 6.240 $1,469$ 754.26 $7,260$ $8,354$ 753.26 6.260 $1,594$ 754.28 $7,280$ $8,499$ 753.26 6.280 $1,719$ 754.30 $7,300$ $8,645$ 753.30 6.300 $1,845$ 754.32 $7,320$ $8,791$ 753.32 6.320 $1,971$ 754.34 $7,340$ $8,938$ 753.34 6.340 2.098 754.36 $7,360$ $9,085$ 753.36 6.360 2.225 754.40 $7,400$ $9,380$ 753.40 6.400 $2,480$ 754.42 $7,420$ $9,528$ 753.44 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,480$ $9,975$ 753.52 $6,500$ $3,125$ 754.50 $7,500$ $10,125$ 753.54 $6,540$ $3,286$ 754.54 $7,540$ $10,426$ 753.55 $6,500$ $3,125$ 754.52 $7,560$ $10,577$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,225$ 753.56 $6,560$ $3,717$ 754.64 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.64 $7,640$ $11,185$ 753.66 $6,660$ $4,178$ 754.68 $7,860$ $11,491$ 753.66 $6,660$ $4,178$ 754.68 $7,860$ $11,338$ 753.66 $6,680$ $4,311$ 754.78 $7,780$ $12,264$						
753.26 6.260 $1,594$ 754.28 $7,280$ $8,499$ 753.28 6.280 $1,719$ 754.30 $7,300$ 8.645 753.30 6.300 $1,845$ 754.32 $7,320$ $8,7911$ 753.32 6.320 $1,971$ 754.34 $7,340$ $8,938$ 753.34 6.340 2.098 754.36 $7,360$ 9.085 753.36 6.360 2.225 754.38 $7,380$ 9.232 753.38 6.380 2.352 754.40 $7,400$ $9,380$ 753.40 6.400 2.480 754.42 7.420 $9,528$ 753.42 $6,420$ 2.608 754.44 $7,440$ $9,677$ 753.44 6.440 2.737 754.46 $7,460$ 9.826 753.50 $6,500$ $3,125$ 754.50 $7,500$ $10,125$ 753.50 $6,500$ $3,255$ 754.52 $7,520$ $10,275$ 753.54 $6,540$ $3,386$ 754.66 $7,660$ $11,328$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.56 $6,660$ $3,780$ 754.62 $7,620$ $11,032$ 753.56 $6,660$ $3,780$ 754.64 $7,640$ $11,185$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,991$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.28 6.280 $1,719$ 754.30 $7,300$ $8,645$ 753.30 $6,300$ 1.845 754.32 $7,320$ 8.791 753.32 $6,320$ 1.971 754.34 $7,340$ $8,938$ 753.34 $6,340$ 2.098 754.36 $7,360$ 9.085 753.36 $6,360$ 2.225 754.38 $7,380$ 9.232 753.38 $6,380$ 2.352 754.40 $7,400$ $9,380$ 753.40 $6,400$ $2,480$ 754.42 $7,420$ $9,528$ 753.42 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.46 $6,460$ $2,866$ 754.52 $7,500$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.66 $6,660$ $3,780$ 754.62 $7,620$ $11,032$ 753.66 $6,660$ $3,780$ 754.62 $7,620$ $11,032$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.70 $6,720$ $4,579$ 754.74 $7,740$ $11,645$ 753.74 $6,740$ $4,445$ 754.78 $7,780$ $12,264$ 753.76 $6,660$ $4,178$ 754.68 $7,680$ $11,338$ 753.66 $6,680$ $5,120$ 754.78 $7,780$ $12,264$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.30 $6,300$ $1,845$ 754.32 $7,320$ $8,791$ 753.32 $6,320$ $1,971$ 754.34 $7,340$ $8,938$ 753.34 $6,340$ $2,098$ 754.36 $7,360$ $9,085$ 753.36 $6,360$ $2,225$ 754.38 $7,380$ $9,232$ 753.38 $6,380$ $2,225$ 754.40 $7,400$ $9,380$ 753.40 $6,400$ $2,480$ 754.42 $7,420$ $9,528$ 753.42 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.44 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.50 $6,500$ $3,125$ 754.52 $7,500$ $10,125$ 753.52 $6,520$ $3,255$ 754.54 $7,580$ $10,275$ 753.54 $6,540$ $3,386$ 754.66 $7,660$ $10,380$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.66 $6,660$ $4,178$ 754.62 $7,620$ $11,032$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.76 $6,760$ $4,849$ 754.78 $7,780$ $12,264$						
753.32 $6,320$ $1,971$ 754.34 $7,340$ $8,938$ 753.34 $6,340$ $2,098$ 754.36 $7,360$ $9,085$ 753.36 $6,360$ $2,225$ 754.38 $7,380$ $9,232$ 753.38 $6,380$ $2,252$ 754.40 $7,400$ $9,380$ 753.40 $6,400$ $2,480$ 754.42 $7,420$ $9,528$ 753.42 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.50 $6,500$ $3,125$ 754.50 $7,500$ $10,125$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,600$ $10,426$ 753.56 $6,560$ $3,517$ 754.68 $7,600$ $10,880$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.74 $6,780$ $4,984$ 754.78 $7,840$ $12,264$ 753.76 $6,760$ $4,849$ 754.78 $7,840$ $12,264$ 753.86 $6,860$ $5,393$ 754.86 $7,860$ $12,209$ 753.76 $6,760$ $4,849$ 754.78 $7,780$ $12,264$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.34 $6,340$ $2,098$ 754.36 $7,360$ $9,085$ 753.36 $6,360$ $2,225$ 754.38 $7,380$ $9,232$ 753.38 $6,380$ $2,352$ 754.40 $7,400$ $9,380$ 753.40 $6,400$ $2,480$ 754.42 $7,420$ $9,528$ 753.42 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,480$ $9,975$ 753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.48 $6,480$ $2,995$ 754.50 $7,500$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.66 $7,660$ $10,577$ 753.56 $6,560$ $3,517$ 754.58 $7,620$ $11,032$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.70 $6,700$ $4,445$ 754.72 $7,700$ $11,645$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,994$ 753.74 $6,740$ $4,714$ 754.78 $7,780$ $12,264$ 753.74 $6,780$ $4,984$ 754.82 $7,840$ $12,209$ 753.74 $6,780$ $4,984$ 754.78 $7,780$ $12,209$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.36 $6,360$ $2,225$ 754.38 $7,380$ $9,232$ 753.38 $6,380$ $2,352$ 754.40 $7,400$ $9,380$ 753.40 $6,400$ $2,480$ 754.42 $7,420$ $9,528$ 753.42 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.44 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,728$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.56 $6,660$ $3,780$ 754.62 $7,620$ $11,032$ 753.66 $6,660$ $4,178$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.74 $6,760$ $4,849$ 754.78 $7,780$ $12,264$ 753.76 $6,680$ $4,311$ 754.68 $7,800$ $12,264$ 753.86 $6,860$ $5,120$ 754.82 $7,820$ $12,576$ 753.76 $6,760$ $4,849$ 754.78 $7,780$ $12,264$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
753.38 $6,380$ $2,352$ 754.40 $7,400$ $9,380$ 753.40 $6,400$ $2,480$ 754.42 $7,420$ $9,528$ 753.42 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.48 $6,480$ $2,995$ 754.50 $7,500$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,577$ 753.56 $6,560$ $3,517$ 754.58 $7,680$ $10,728$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.70 $6,700$ $4,445$ 754.74 $7,740$ $11,954$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,264$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,420$ 753.84 $6,860$ $5,530$ 754.90 $7,900$ $13,205$ 753.84 $6,860$ $5,530$ 754.94 $7,860$ $12,420$						0,000
753.40 $6,400$ $2,480$ 754.42 $7,420$ $9,528$ 753.42 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.48 $6,480$ $2,995$ 754.50 $7,500$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,600$ $10,728$ 753.56 $6,560$ $3,517$ 754.58 $7,600$ $10,880$ 753.66 $6,660$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.70 $6,700$ $4,445$ 754.74 $7,720$ $11,799$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.78 $6,780$ $4,984$ 754.82 $7,880$ $12,264$ 753.82 $6,820$ $5,256$ 754.84 $7,840$ $12,733$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,420$ 753.78 $6,780$ $4,984$ 754.78 $7,880$ $12,264$						
753.42 $6,420$ $2,608$ 754.44 $7,440$ $9,677$ 753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.48 $6,480$ $2,995$ 754.50 $7,500$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,778$ 753.56 $6,560$ $3,517$ 754.58 $7,660$ $10,880$ 753.66 $6,660$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,660$ $4,178$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.72 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,780$ $12,204$ 753.74 $6,740$ $4,714$ 754.76 $7,780$ $12,264$ 753.74 $6,760$ $4,849$ 754.78 $7,800$ $12,204$ 753.78 $6,860$ $5,530$ 754.84 $7,840$ $12,733$ 753.84 $6,860$ $5,530$ 754.86 $7,860$ $12,420$ 753.84 $6,860$ $5,530$ 754.86 $7,860$ $12,20$						
753.44 $6,440$ $2,737$ 754.46 $7,460$ $9,826$ 753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.48 $6,480$ $2,995$ 754.50 $7,500$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,577$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.58 $6,660$ $3,648$ 754.62 $7,600$ $10,880$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,032$ 753.64 $6,640$ $4,045$ 754.62 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.74 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.74 $6,740$ $4,714$ 754.78 $7,780$ $12,264$ 753.80 $6,800$ $5,120$ 754.82 $7,880$ $12,420$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,840$ $5,393$ 754.92 $7,920$ $13,363$ 753.84 $6,860$ $5,530$ 754.94 $7,940$ $13,2$,
753.46 $6,460$ $2,866$ 754.48 $7,480$ $9,975$ 753.48 $6,480$ $2,995$ 754.50 $7,500$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,577$ 753.56 $6,660$ $3,517$ 754.58 $7,580$ $10,728$ 753.66 $6,660$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,138$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.66 $6,660$ $4,178$ 754.72 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,700$ $11,645$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.76 $6,760$ $4,849$ 754.80 $7,800$ $12,264$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,576$ 753.82 $6,820$ $5,256$ 754.84 $7,840$ $12,733$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.86 $6,860$ $5,530$ 754.94 $7,940$ $13,$						
753.48 $6,480$ $2,995$ 754.50 $7,500$ $10,125$ 753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,577$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.58 $6,580$ $3,648$ 754.60 $7,600$ $10,880$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.72 $7,720$ $11,799$ 753.72 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,264$ 753.78 $6,780$ $4,984$ 754.78 $7,800$ $12,264$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,576$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,860$ $5,530$ 754.92 $7,920$ 13						
753.50 $6,500$ $3,125$ 754.52 $7,520$ $10,275$ 753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,577$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.58 $6,580$ $3,648$ 754.62 $7,600$ $10,880$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,1178$ 754.72 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.76 $6,760$ $4,849$ 754.78 $7,800$ $12,264$ 753.80 $6,800$ $5,120$ 754.82 $7,840$ $12,733$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,860$ $5,530$ 754.94 $7,940$ $13,225$ 753.90 $6,920$ $5,943$ 754.94 $7,940$ $13,522$ 753.94 $6,940$ $6,082$ 754.98 $7,980$ 1						
753.52 $6,520$ $3,255$ 754.54 $7,540$ $10,426$ 753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,577$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.58 $6,580$ $3,648$ 754.60 $7,600$ $10,880$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.68 $7,680$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.70 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.76 $6,760$ $4,849$ 754.78 $7,780$ $12,264$ 753.76 $6,760$ $4,849$ 754.82 $7,820$ $12,733$ 753.80 $6,800$ $5,120$ 754.84 $7,840$ $12,733$ 753.82 $6,820$ $5,256$ 754.84 $7,860$ $12,890$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $13,681$ 753.90 $6,960$ $5,667$ 754.94 $7,940$ 13						
753.54 $6,540$ $3,386$ 754.56 $7,560$ $10,577$ 753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.58 $6,580$ $3,648$ 754.60 $7,600$ $10,880$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.62 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.70 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.76 $6,760$ $4,849$ 754.78 $7,800$ $12,264$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,576$ 753.82 $6,820$ $5,256$ 754.84 $7,840$ $12,733$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,860$ $5,530$ 754.92 $7,920$ $13,363$ 753.90 $6,900$ $5,805$ 754.92 $7,920$ $13,663$ 753.94 $6,940$ $6,682$ 754.96 $7,960$ $13,681$ 753.98 $6,980$ $6,360$ 755.00 $8,000$ 14						
753.56 $6,560$ $3,517$ 754.58 $7,580$ $10,728$ 753.58 $6,580$ $3,648$ 754.60 $7,600$ $10,880$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.70 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.76 $6,760$ $4,849$ 754.78 $7,800$ $12,264$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,576$ 753.80 $6,800$ $5,120$ 754.82 $7,860$ $12,890$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.84 $6,860$ $5,530$ 754.94 $7,940$ $13,522$ 753.90 $6,900$ $5,805$ 754.94 $7,940$ $13,522$ 753.94 $6,940$ $6,082$ 754.96 $7,960$ $13,681$ 753.98 $6,980$ $6,360$ 755.00 $8,000$ $14,000$						
753.58 $6,580$ $3,648$ 754.60 $7,600$ $10,880$ 753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.70 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.76 $6,760$ $4,849$ 754.78 $7,780$ $12,264$ 753.78 $6,780$ $4,984$ 754.82 $7,820$ $12,576$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,576$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.86 $6,880$ $5,667$ 754.92 $7,920$ $13,363$ 753.84 $6,880$ $5,667$ 754.92 $7,920$ $13,363$ 753.90 $6,920$ $5,943$ 754.94 $7,940$ $13,522$ 753.94 $6,940$ $6,082$ 754.96 $7,960$ $13,681$ 753.98 $6,980$ $6,360$ 755.00 $8,000$ $14,000$						
753.60 $6,600$ $3,780$ 754.62 $7,620$ $11,032$ 753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.70 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.76 $6,760$ $4,849$ 754.78 $7,800$ $12,264$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,576$ 753.80 $6,800$ $5,256$ 754.84 $7,840$ $12,733$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.86 $6,860$ $5,530$ 754.90 $7,900$ $13,205$ 753.90 $6,900$ $5,805$ 754.92 $7,920$ $13,363$ 753.92 $6,920$ $5,943$ 754.94 $7,940$ $13,522$ 753.94 $6,940$ $6,082$ 754.98 $7,980$ $13,681$ 753.98 $6,980$ $6,360$ 755.00 $8,000$ $14,000$						
753.62 $6,620$ $3,912$ 754.64 $7,640$ $11,185$ 753.64 $6,640$ $4,045$ 754.66 $7,660$ $11,338$ 753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.70 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.76 $6,760$ $4,849$ 754.78 $7,800$ $12,264$ 753.78 $6,780$ $4,984$ 754.80 $7,800$ $12,420$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,576$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.86 $6,860$ $5,530$ 754.90 $7,900$ $13,205$ 753.90 $6,900$ $5,805$ 754.92 $7,920$ $13,363$ 753.92 $6,920$ $5,943$ 754.94 $7,940$ $13,522$ 753.94 $6,940$ $6,082$ 754.98 $7,980$ $13,840$ 753.98 $6,980$ $6,360$ 755.00 $8,000$ $14,000$						
753.646,6404,045754.667,66011,338753.666,6604,178754.687,68011,491753.686,6804,311754.707,70011,645753.706,7004,445754.727,72011,799753.726,7204,579754.747,74011,954753.766,7604,849754.787,78012,109753.766,7604,849754.787,78012,264753.786,7804,984754.807,80012,420753.806,8005,120754.827,82012,576753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.906,9005,805754.927,92013,663753.926,9205,943754.947,94013,522753.946,9606,221754.987,98013,840753.986,9806,360755.008,00014,000						
753.66 $6,660$ $4,178$ 754.68 $7,680$ $11,491$ 753.68 $6,680$ $4,311$ 754.70 $7,700$ $11,645$ 753.70 $6,700$ $4,445$ 754.72 $7,720$ $11,799$ 753.72 $6,720$ $4,579$ 754.74 $7,740$ $11,954$ 753.74 $6,740$ $4,714$ 754.76 $7,760$ $12,109$ 753.76 $6,760$ $4,849$ 754.78 $7,780$ $12,264$ 753.78 $6,780$ $4,984$ 754.80 $7,800$ $12,420$ 753.80 $6,800$ $5,120$ 754.82 $7,820$ $12,576$ 753.82 $6,820$ $5,256$ 754.84 $7,840$ $12,733$ 753.84 $6,840$ $5,393$ 754.86 $7,860$ $12,890$ 753.88 $6,880$ $5,667$ 754.90 $7,900$ $13,205$ 753.90 $6,900$ $5,805$ 754.92 $7,920$ $13,363$ 753.92 $6,920$ $5,943$ 754.94 $7,940$ $13,522$ 753.94 $6,940$ $6,082$ 754.98 $7,980$ $13,840$ 753.98 $6,980$ $6,360$ 755.00 $8,000$ $14,000$						
753.686,6804,311754.707,70011,645753.706,7004,445754.727,72011,799753.726,7204,579754.747,74011,954753.746,7404,714754.767,76012,109753.766,7604,849754.787,78012,264753.786,7804,984754.807,80012,420753.806,8005,120754.827,82012,576753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.946,9406,082754.967,96013,681753.986,9806,360755.008,00014,000						
753.706,7004,445754.727,72011,799753.726,7204,579754.747,74011,954753.746,7404,714754.767,76012,109753.766,7604,849754.787,78012,264753.786,7804,984754.807,80012,420753.806,8005,120754.827,82012,576753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.886,8605,530754.887,88013,047753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.946,9406,082754.967,96013,681753.986,9806,360755.008,00014,000						
753.726,7204,579754.747,74011,954753.746,7404,714754.767,76012,109753.766,7604,849754.787,78012,264753.786,7804,984754.807,80012,420753.806,8005,120754.827,82012,576753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.886,8605,530754.887,88013,047753.886,8605,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.987,98013,840753.986,9806,360755.008,00014,000						
753.746,7404,714754.767,76012,109753.766,7604,849754.787,78012,264753.786,7804,984754.807,80012,420753.806,8005,120754.827,82012,576753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.856,8605,530754.887,88013,047753.866,8605,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.987,98013,840753.986,9806,360755.008,00014,000						
753.766,7604,849754.787,78012,264753.786,7804,984754.807,80012,420753.806,8005,120754.827,82012,576753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.866,8605,530754.887,88013,047753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.987,98013,840753.986,9806,360755.008,00014,000						
753.786,7804,984754.807,80012,420753.806,8005,120754.827,82012,576753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.866,8605,530754.887,88013,047753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.987,98013,840753.986,9806,360755.008,00014,000		,				
753.806,8005,120754.827,82012,576753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.866,8605,530754.887,88013,047753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.967,96013,681753.986,9806,360755.008,00014,000						
753.826,8205,256754.847,84012,733753.846,8405,393754.867,86012,890753.866,8605,530754.887,88013,047753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.967,96013,681753.986,9806,360755.008,00014,000						
753.846,8405,393754.867,86012,890753.866,8605,530754.887,88013,047753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.967,96013,681753.986,9806,360755.008,00014,000						
753.866,8605,530754.887,88013,047753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.967,96013,681753.966,9606,221754.987,98013,840753.986,9806,360755.00 8,000 14,000						
753.886,8805,667754.907,90013,205753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.967,96013,681753.966,9606,221754.987,98013,840753.986,9806,360755.00 8,00014,000						
753.906,9005,805754.927,92013,363753.926,9205,943754.947,94013,522753.946,9406,082754.967,96013,681753.966,9606,221754.987,98013,840753.986,9806,360755.00 8,00014,000						
753.926,9205,943754.947,94013,522753.946,9406,082754.967,96013,681753.966,9606,221754.987,98013,840753.986,9806,360755.00 8,00014,000						
753.946,9406,082754.967,96013,681753.966,9606,221754.987,98013,840753.986,9806,360755.00 8,00014,000						
753.966,9606,221754.987,98013,840753.986,9806,360755.008,00014,000						
753.98 6,980 6,360 755.00 8,000 14,000		•				
						,

Proposed Conditions - I

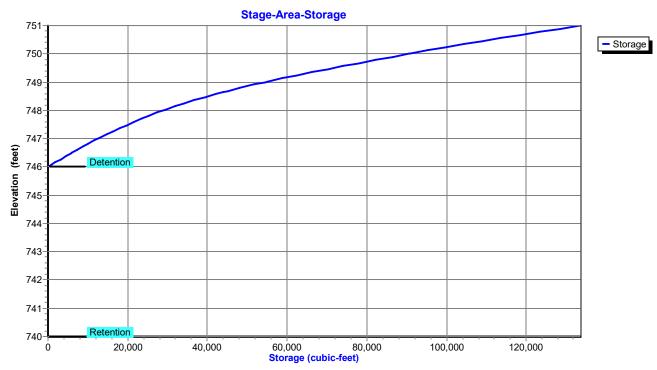
Page 56

Summary for Pond P-1: Wet Pond P-1

Inflow Area =	22.268 ac, 71.72% Impervious, Inflow D	Depth = 2.13" for 10-yr event
Inflow =	50.84 cfs @ 11.97 hrs, Volume=	3.958 af
Outflow =	11.58 cfs @ 12.54 hrs, Volume=	3.950 af, Atten= 77%, Lag= 34.6 min
Primary =	11.58 cfs $\overline{@}$ 12.54 hrs, Volume=	3.950 af


Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 749.30' @ 12.54 hrs Surf.Area= 45,404 sf Storage= 64,599 cf

Plug-Flow detention time= 314.9 min calculated for 3.947 af (100% of inflow) Center-of-Mass det. time= 314.7 min (1,146.5 - 831.8)


Volume	Inver	t Avai	I.Storage	Storage Description	on				
#1	740.00)'	0 cf						
#2	746.00)' 1 <i>'</i>	33,484 cf	24,499 cf Overall Detention (Irregu		(Recalc)			
<u></u>	740.00		33,484 cf	Total Available St		(Needle)			
			55,404 01		orage				
Elevatio	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
740.00	0	651	103.0	0	0	651			
741.50	0	2,244	1,016.0	2,052	2,052	81,955			
745.00	0	4,383	391.0	11,390	13,442	151,977			
746.50	0	10,839	632.0	11,057	24,499	171,611			
Elevatio	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
746.00	1	11,459	563.0	0	0	11,459			
747.00		13,760	587.0	12,592	12,592	13,729			
748.00	0	19,120	930.0	16,367	28,959	55,143			
749.00	0	32,528	1,810.0	25,529	54,488	247,025			
750.00	0	39,522	1,836.0	35,968	90,456	254,786			
751.00	0	46,632	1,863.0	43,028	133,484	262,946			
Device	Routing	In	vert Outl	et Devices					
	Primary	742		" Round Culvert					
"	1 minuty	174		35.0' CPP, square	edge headwall	(e= 0.500			
						= 0.0019 '/' Cc= 0.900			
				0.012, Flow Area=					
#2	Device 1	748		" W x 30.0" H 9° G					
				ted to weir flow at l	ow heads				
#3	Primary	749	.65' 20.0	' long Sharp-Crest	ted Rectangular \	Neir 2 End Contraction(s	;)		
#4	Device 1	746		Round Culvert-Lo		· ·	,		
			L= 1	5.0' CPP, projecti	ing, no headwall,	Ke= 0.900			
						= -0.0333 '/' Cc= 0.900			
			n= (0.012, Flow Area=	0.20 sf				

Primary OutFlow Max=11.58 cfs @ 12.54 hrs HW=749.30' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 11.58 cfs of 56.93 cfs potential flow) 2=Grate (Weir Controls 10.27 cfs @ 2.27 fps) 4=Culvert-Low Flow (Inlet Controls 1.30 cfs @ 6.64 fps) 3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond P-1: Wet Pond P-1

Proposed Conditions I

Pond P-1: Wet Pond P-1

Proposed Conditions IType II 24-hPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond P-1: Wet Pond P-1

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
740.00	0.00	743.06	0.00	746.12	0.03	749.18	7.99
740.06	0.00	743.12	0.00	746.18	0.07	749.24	9.69
740.12	0.00	743.18	0.00	746.24	0.12	749.30	11.54
740.18	0.00	743.24	0.00	746.30	0.18	749.36	13.52
740.24	0.00	743.30	0.00	746.36	0.24	749.42	15.63
740.30	0.00	743.36	0.00	746.42	0.31	749.48	17.85
740.36	0.00	743.42	0.00	746.48	0.36	749.54	20.19
740.42	0.00	743.48	0.00	746.54	0.40	749.60	22.63
740.48	0.00	743.54	0.00	746.60	0.44	749.66	25.23
740.54	0.00	743.60	0.00	746.66	0.48	749.72	29.02
740.60	0.00	743.66	0.00	746.72	0.51	749.78	33.50
740.66	0.00	743.72	0.00	746.78	0.54	749.84	36.78
740.72	0.00	743.78	0.00	746.84	0.57	749.90	40.44
740.78	0.00	743.84	0.00	746.90	0.60	749.96	44.42
740.84	0.00	743.90	0.00	746.96	0.63	750.02	48.69
740.90	0.00	743.96	0.00	747.02	0.65	750.08	53.22
740.96	0.00	744.02	0.00	747.08	0.68	750.14	58.00
741.02	0.00	744.08	0.00	747.14	0.70	750.20	63.01
741.08	0.00	744.14	0.00	747.20	0.73	750.26	68.22
741.14	0.00	744.20	0.00	747.26	0.75	750.32	73.65
741.20	0.00	744.26	0.00	747.32	0.77	750.38	79.26
741.26	0.00	744.32	0.00	747.38	0.79	750.44	85.06
741.32	0.00	744.38	0.00	747.44	0.81	750.50	91.04
741.38 741.44	0.00 0.00	744.44 744.50	0.00 0.00	747.50	0.83 0.85	750.56 750.62	97.19 103.50
741.44	0.00	744.50	0.00	747.56 747.62	0.85	750.62	103.50
741.50	0.00	744.50	0.00	747.68	0.87	750.08	116.60
741.62	0.00	744.68	0.00	747.74	0.09	750.80	123.37
741.68	0.00	744.74	0.00	747.80	0.91	750.86	130.29
741.74	0.00	744.80	0.00	747.86	0.95	750.92	137.35
741.80	0.00	744.86	0.00	747.92	0.96	750.98	144.55
741.86	0.00	744.92	0.00	747.98	0.98	100.00	
741.92	0.00	744.98	0.00	748.04	1.00		
741.98	0.00	745.04	0.00	748.10	1.02		
742.04	0.00	745.10	0.00	748.16	1.03		
742.10	0.00	745.16	0.00	748.22	1.05		
742.16	0.00	745.22	0.00	748.28	1.06		
742.22	0.00	745.28	0.00	748.34	1.08		
742.28	0.00	745.34	0.00	748.40	1.09		
742.34	0.00	745.40	0.00	748.46	1.11		
742.40	0.00	745.46	0.00	748.52	1.12		
742.46	0.00	745.52	0.00	748.58	1.14		
742.52	0.00	745.58	0.00	748.64	1.15		
742.58	0.00	745.64	0.00	748.70	1.27		
742.64	0.00	745.70	0.00	748.76	1.54		
742.70	0.00	745.76	0.00	748.82	1.95		
742.76	0.00	745.82	0.00	748.88	2.51		
742.82	0.00	745.88	0.00	748.94 749.00	3.21		
742.88 742.94	0.00 0.00	745.94 746.00	0.00 0.00	749.00 749.06	4.07 5.12		
742.94 743.00	0.00	746.00	0.00	749.06	5.12 6.46		
743.00	0.00	140.00	0.01	149.12	0.40		
		I	I	I	I		

Proposed Conditions ITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond P-1: Wet Pond P-1

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
740.00	0	747.65	22,616
740.15	0	747.80	25,249
740.30	0	747.95	28,010
740.45	Ō	748.10	30,929
740.60	0 0	748.25	34,112
740.75	Õ	748.40	37,575
740.90	ů 0	748.55	41,333
741.05	0	748.70	45,396
741.20	0	748.85	49,777
741.35	0	749.00	54,488
741.50	0	749.15	59,442
741.65	0	749.13	64,548
741.80	0	749.30	
			69,809
741.95	0	749.60	75,227
742.10	0	749.75	80,803
742.25	0	749.90	86,540
742.40	0	750.05	92,440
742.55	0	750.20	98,497
742.70	0	750.35	104,710
742.85	0	750.50	111,081
743.00	0	750.65	117,612
743.15	0	750.80	124,305
743.30	0	750.95	131,161
743.45	0		
743.60	0		
743.75	0		
743.90	0		
744.05	0		
744.20	0		
744.35	0		
744.50	0		
744.65	0		
744.80	0		
744.95	0		
745.10	0		
745.25	0		
745.40	0		
745.55	0		
745.70	0		
745.85	0		
746.00	0		
746.15	1,744		
746.30	3,537		
746.45	5,382		
746.60	7,278		
746.75	9,227		
746.90	11,228		
747.05	13,286		
747.20	15,444		
747.35	17,716		
747.50	20,105		

Summary for Link 1AT: DA #1A Total

Inflow Are	a =	56.205 ac, 63.22% Impervious, Inflow Depth = 2.11" for 10-yr event
Inflow	=	61.72 cfs @ 12.23 hrs, Volume= 9.882 af
Primary	=	61.72 cfs @ 12.23 hrs, Volume= 9.882 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-1: DP #1 - Rush Crk Trib.

Inflow Are	a =	56.205 ac, 63.22% Impervious, Inflow Depth = 2.11" for 10-yr event
Inflow	=	61.72 cfs @ 12.23 hrs, Volume= 9.882 af
Primary	=	61.72 cfs @ 12.23 hrs, Volume= 9.882 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP #2 - Smokes Crk

 Inflow Area =
 83.814 ac, 88.53% Impervious, Inflow Depth =
 2.70" for 10-yr event

 Inflow =
 193.21 cfs @
 12.00 hrs, Volume=
 18.824 af

 Primary =
 193.21 cfs @
 12.00 hrs, Volume=
 18.824 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

10-yr Primary Outflow Imported from Proposed Conditions II~Link DP-2.hce

Summary for Link DP-3: DP #3 - Rush Crk

 Inflow Area =
 55.981 ac, 45.79% Impervious, Inflow Depth > 1.93" for 10-yr event

 Inflow =
 56.47 cfs @ 12.34 hrs, Volume=
 9.009 af

 Primary =
 56.47 cfs @ 12.34 hrs, Volume=
 9.009 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

10-yr Primary Outflow Imported from Proposed Conditions III~Link DP-3.hce

Summary for Link PT: Proposed Conditions Total Offsite

Inflow Are	a =	196.000 ac, 69.06% Impervious, Inflow Depth > 2.31" for 10-yr event
Inflow	=	263.17 cfs @ 12.20 hrs, Volume= 37.715 af
Primary	=	263.17 cfs @ 12.20 hrs, Volume= 37.715 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 1A-I: DA #1A-I

Runoff = 57.06 cfs @ 12.27 hrs, Volume= 5.863 af, Depth= 2.70"

A	rea (ac) (CN E	Desc	cription		
	0.0	000	74 >	·75%	% Grass co	over, Good	, HSG C
	11.5	558	80 >	·75%	% Grass co	over, Good	, HSG D
	0.0	000	98 F	Pave	ed parking	HSG C	
	13.4	442	98 F	Pave	ed parking	HSG D	
	0.0	000	96 0	Grav	el surface	, HSG C	
	0.0	000	96 0	Grav	el surface	, HSG D	
	1.()44	<u>77 V</u>	Voo	ds, Good,	HSG D	
	26.0	044			ghted Aver		
	12.6	602	4	8.3	9% Pervio	us Area	
	13.4	442	5	51.6	1% Imperv	vious Area	
	_						
	Tc	Length			Velocity	Capacity	Description
(m	nin)	(feet)	(ft	/ft)	(ft/sec)	(cfs)	
2	6.7	150	0.01	50	0.09		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.20"
	2.9	340	0.01	50	1.97		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.4	75	0.02	00	2.87		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	2.8	760			4.50		Direct Entry, Pipe Flow
3	2.8	1,325	Tota	I			

Summary for Subcatchment 1A-II: DA #1A-II

Runoff = 48.91 cfs @ 11.96 hrs, Volume= 2.522 af, Depth= 2.99"

	Area ((ac) (CN E	Desc	cription		
	0.0	000	74 >	•75%	% Grass co	over, Good	, HSG C
	2.7	746	80 >	•75%	% Grass co	over, Good	, HSG D
	0.0	000	98 F	Pave	ed parking	, HSG C	
	6.	783			ed parking		
	0.0	000	96 0	Grav	el surface	, HSG C	
					el surface	,	
	0.5	587	77 V	Voo	ds, Good,	HSG D	
	10.1	116	92 V	Veig	ghted Aver	age	
	3.3	333	3	32.9	5% Pervio	us Area	
	6.	783	6	67.0	5% Imper\	∕ious Area	
	Tc	Length			Velocity	Capacity	Description
(I	min)	(feet)	(ft	/ft)	(ft/sec)	(cfs)	
	1.6	100	0.01	70	1.07		Sheet Flow,
							Smooth surfaces n= 0.011 P2= 2.20"
	0.9	140	0.01	70	2.65		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	2.3	630			4.50		Direct Entry, Pipe Flow
	4.8	870	Tota	ıl, Ir	ncreased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 1A-III: DA #1A-III

Runoff = 27.74 cfs @ 11.96 hrs, Volume= 1.487 af, Depth= 3.30"

	Area ((ac)	CN	Desc	cription		
	0.0	000	74	>75%	6 Grass co	over, Good,	HSG C
	0.8	883	80	>75%	6 Grass co	over, Good,	HSG D
	0.0	000	98		ed parking,		
	4.	519	98		ed parking,		
	0.0	000	96	Grav	el surface	, HSG C	
	0.0	000	96	Grav	el surface	, HSG D	
	5.4	402	95	Weig	phted Aver	age	
	0.8	883		16.3	5% Pervio	us Area	
	4.	519		83.6	5% Imperv	vious Area	
	Тс	Length		Slope	Velocity	Capacity	Description
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.6	100	0.	0170	1.07		Sheet Flow,
							Smooth surfaces n= 0.011 P2= 2.20"
	1.3	205	5 0.	0170	2.65		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	2.9	305	5 To	otal, Ir	ncreased t	o minimum	Tc = 6.0 min
				,			

Summary for Subcatchment 1A-IV: DA #1A-IV

Runoff = 32.64 cfs @ 11.96 hrs, Volume= 1.683 af, Depth= 2.99"

Area	(ac) C	N Des	cription		
0.	000	74 >75	% Grass c	over, Good	, HSG C
2.	082	80 >75	% Grass c	over, Good	, HSG D
0.	000		ed parking	,	
			ed parking		
			vel surface	,	
0.	000	96 Gra	vel surface	e, HSG D	
		92 We	ighted Ave	rage	
	082		34% Pervio		
4.	668	69.2	16% Imperv	∕ious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.6	100	0.0170	1.07		Sheet Flow,
0.7	110	0.0170	2.65		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps
2.4	360		2.50		Direct Entry,
4.7	570	Total,	Increased t	o minimum	i Tc = 6.0 min

Summary for Subcatchment 1A-V: DA #1A-V

Runoff = 26.84 cfs @ 11.96 hrs, Volume= 1.418 af, Depth= 3.20"

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Area	(ac)	CN	Desc	ription		
0.000 98 Paved parking, HSG C 4.088 98 Paved parking, HSG D 0.000 96 Gravel surface, HSG C 0.000 96 Gravel surface, HSG D 5.321 94 Weighted Average 1.233 23.17% Pervious Area 4.088 76.83% Impervious Area 4.088 76.83% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Flow 1.3 200 2.50 Direct Entry, Swale Flow	0	.000	74	>75%	6 Grass co	over, Good	, HSG C
4.088 98 Paved parking, HSG D 0.000 96 Gravel surface, HSG D 5.321 94 Weighted Average 1.233 23.17% Pervious Area 4.088 76.83% Impervious Area 4.088 76.83% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50	1	.233	80	>75%	6 Grass co	over, Good	, HSG D
0.000 96 Gravel surface, HSG C 0.000 96 Gravel surface, HSG D 5.321 94 Weighted Average 1.233 23.17% Pervious Area 4.088 76.83% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	0	.000	98				
0.000 96 Gravel surface, HSG D 5.321 94 Weighted Average 1.233 23.17% Pervious Area 4.088 76.83% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	4	.088	98				
5.32194Weighted Average1.23323.17% Pervious Area4.08876.83% Impervious AreaTcLengthSlopeVelocityCapacity(min)(feet)(ft/ft)(ft/sec)(cfs)1.61000.01701.07Sheet Flow, Smooth surfaces n= 0.0111.42250.01702.65Shallow Concentrated Flow, Paved1.32002.50Direct Entry, Swale Flow							
1.233 4.08823.17% Pervious AreaTcLengthSlopeVelocityCapacity (ft/ft)Description(min)(feet)(ft/ft)(ft/sec)(cfs)1.61000.01701.07Sheet Flow, Smooth surfaces n= 0.011P2= 2.20"1.42250.01702.65Shallow Concentrated Flow, PavedFlow, Paved1.32002.50Direct Entry, Swale Flow	0	.000	96	Grav	el surface	, HSG D	
4.08876.83% Impervious AreaTcLengthSlopeVelocityCapacity (cfs)Description(min)(feet)(ft/ft)(ft/sec)(cfs)1.61000.01701.07Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20"1.42250.01702.65Shallow Concentrated Flow, Paved Kv= 20.3 fps1.32002.50Direct Entry, Swale Flow	5	.321	94	Weig	ghted Aver	age	
TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)Description1.61000.01701.07Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20"1.42250.01702.65Shallow Concentrated Flow, Paved Kv= 20.3 fps1.32002.50Direct Entry, Swale Flow	1	.233		23.1	7% Pervio	us Area	
(min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	4	.088		76.8	3% Imperv	vious Area	
(min) (feet) (ft/ft) (ft/sec) (cfs) 1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	_					- ··	
1.6 100 0.0170 1.07 Sheet Flow, Smooth surfaces Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow					,		Description
1.4 225 0.0170 2.65 Smooth surfaces n= 0.011 P2= 2.20" 1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
1.4 225 0.0170 2.65 Shallow Concentrated Flow, Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow	1.6	10	0 0	.0170	1.07		Sheet Flow,
Paved Kv= 20.3 fps 1.3 200 2.50 Direct Entry, Swale Flow							Smooth surfaces n= 0.011 P2= 2.20"
1.3 200 2.50 Direct Entry, Swale Flow	1.4	22	5 0	.0170	2.65		•
4.3 525 Total, Increased to minimum Tc = 6.0 min	1.3	20					
	4.3	52	5 T	otal, Ir	ncreased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 1A-VI: DA #1A-V

Runoff = 12.97 cfs @ 11.96 hrs, Volume= 0.685 af, Depth= 3.20"

_	Area	(ac)	CN	Desc	ription		
	0.	000	74	>75%	6 Grass co	over, Good	, HSG C
	0.	542	80	>75%	6 Grass co	over, Good	, HSG D
	0.	000	98		d parking		
		030	98		ed parking		
	0.	000	96		el surface	,	
	0.	000	96	Grav	el surface	, HSG D	
		572	94		ghted Aver	0	
		542			7% Pervio		
	2.	030		78.93	3% Imperv	vious Area	
	Tc (min)	Length (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.5	100) 0.	0200	1.14		Sheet Flow,
	2.0	350		0200	2.87		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	1.3	200)		2.50		Direct Entry, Swale Flow
	4.8	650) To	otal, Ir	ncreased t	o minimum	Tc = 6.0 min

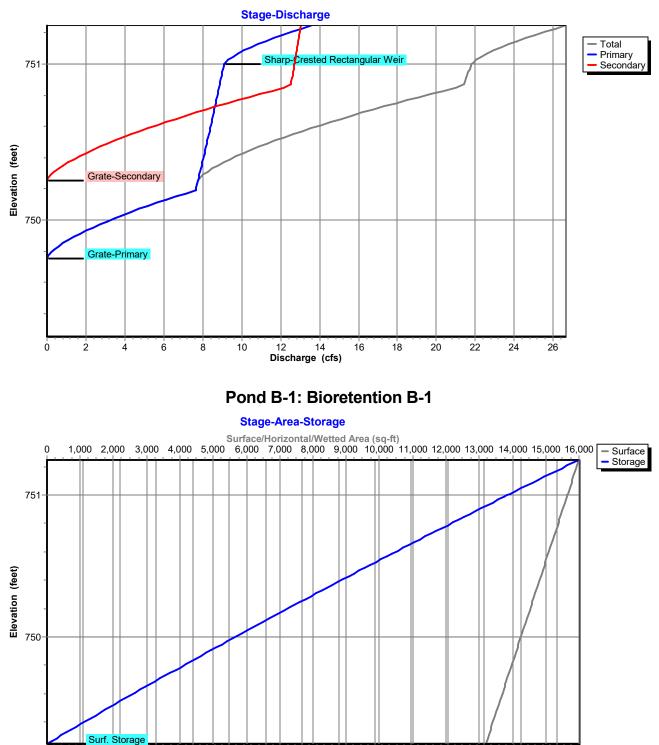
Summary for Pond B-1: Bioretention B-1

Inflow A Inflow Outflow Primary Seconda	= 27.74 = 16.00 = 7.77	4 cfs @ 1) cfs @ 12 7 cfs @ 1	65% Impervious, Inflow Depth = 3.30" for 25-yr event 1.96 hrs, Volume= 1.487 af 2.05 hrs, Volume= 1.331 af, Atten= 42%, Lag= 5.1 min 1.89 hrs, Volume= 1.134 af 2.06 hrs, Volume= 0.198 af				
			Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Surf.Area= 15,303 sf Storage= 21,407 cf				
	Plug-Flow detention time= 111.8 min calculated for 1.331 af (90% of inflow) Center-of-Mass det. time= 57.9 min (829.7 - 771.8)						
Volume	Invert	Avail.Sto	rage Storage Description				
#1	749.25'		00 cf Surf. Storage (Prismatic) Listed below (Recalc)				
Elevatio (fee	on Surf.		Inc.Store Cum.Store (cubic-feet) (cubic-feet)				
749.2	25 13	,200	0 0				
751.2		,000	29,200 29,200				
Device	Routing	-	Outlet Devices				
#1	Primary	747.25'	15.0" Round Culvert-Primary L= 87.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 747.25' / 747.00' S= 0.0029 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf				
#2	Device 1	749.75'	24.0" x 24.0" Horiz. Grate-Primary C= 0.600 Limited to weir flow at low heads				
#3	Primary	751.00'	10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
#4	Secondary	745.75'	15.0" Round Culvert-Secondary				
#5	Device 4	750.25'	L= 45.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 745.75' / 744.13' S= 0.0360 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf 24.0'' x 24.0'' Horiz. Grate-Secondary C= 0.600				
Limited to weir flow at low heads							
Primary OutFlow Max=7.22 cfs @ 11.89 hrs HW=750.31' TW=748.57' (Dynamic Tailwater) -1=Culvert-Primary (Outlet Controls 7.22 cfs @ 5.89 fps) -2=Grate-Primary (Passes 7.22 cfs of 10.99 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)							

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=9.15 cfs @ 12.06 hrs HW=750.75' TW=0.00' (Dynamic Tailwater) 4=Culvert-Secondary (Passes 9.15 cfs of 12.35 cfs potential flow) 5=Grate-Secondary (Weir Controls 9.15 cfs @ 2.30 fps)

Proposed Conditions I


Ó

2,000

4,000

6,000

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 24,000 26,000 28,000

Storage (cubic-feet)

Pond B-1: Bioretention B-1

Proposed Conditions ITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond B-1: Bioretention B-1

			•				- ·
Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
749.25	0.00	0.00	0.00	750.27	7.86	7.79	0.07
749.27	0.00	0.00	0.00	750.29	8.04	7.83	0.21
749.29	0.00	0.00	0.00	750.31	8.25	7.87	0.38
749.31	0.00	0.00	0.00	750.33	8.50	7.90	0.59
749.33	0.00	0.00	0.00	750.35	8.77	7.94	0.83
749.35	0.00	0.00	0.00	750.37	9.07	7.98	1.09
749.37	0.00	0.00	0.00	750.39	9.39	8.02	1.37
749.39	0.00	0.00	0.00	750.41	9.73	8.06	1.67
749.41	0.00	0.00	0.00	750.43	10.09	8.09	2.00
749.43	0.00	0.00	0.00	750.45	10.47	8.13	2.34
749.45	0.00	0.00	0.00	750.47	10.87	8.17	2.70
749.47	0.00	0.00	0.00	750.49	11.28	8.20	3.08
749.49	0.00	0.00	0.00	750.51	11.71	8.24	3.47
749.51	0.00	0.00	0.00	750.53	12.15	8.28	3.88
749.53	0.00	0.00	0.00	750.55	12.61	8.31	4.30
749.55	0.00	0.00	0.00	750.57	13.08	8.35	4.74
749.57	0.00	0.00	0.00	750.59	13.57	8.38	5.19
749.59	0.00	0.00	0.00	750.61	14.07	8.42	5.65
749.61	0.00	0.00	0.00	750.63	14.58	8.46	6.13
749.63	0.00	0.00	0.00	750.65	15.11	8.49	6.62
749.65	0.00	0.00	0.00	750.67	15.65	8.53	7.12
749.67	0.00	0.00	0.00	750.69	16.20	8.56	7.64
749.69	0.00	0.00	0.00	750.71	16.76	8.60	8.16
749.09	0.00	0.00	0.00	750.73	17.33	8.63	8.70
749.71	0.00	0.00	0.00	750.75	17.33	8.67	9.25
749.73		0.00	0.00		18.51	8.70	
	0.00 0.07	0.00	0.00	750.77	10.51	8.70 8.73	9.81
749.77				750.79			10.38
749.79	0.21	0.21	0.00	750.81	19.73	8.77	10.96
749.81	0.38	0.38	0.00	750.83	20.36	8.80	11.56
749.83	0.59	0.59	0.00	750.85	21.00	8.84	12.16
749.85	0.83	0.83	0.00	750.87	21.40	8.87	12.53
749.87	1.09	1.09	0.00	750.89	21.46	8.91	12.56
749.89	1.37	1.37	0.00	750.91	21.52	8.94	12.58
749.91	1.67	1.67	0.00	750.93	21.58	8.97	12.61
749.93	2.00	2.00	0.00	750.95	21.64	9.01	12.64
749.95	2.34	2.34	0.00	750.97	21.71	9.04	12.67
749.97	2.70	2.70	0.00	750.99	21.77	9.07	12.69
749.99	3.08	3.08	0.00	751.01	21.86	9.14	12.72
750.01	3.47	3.47	0.00	751.03	22.06	9.31	12.75
750.03	3.88	3.88	0.00	751.05	22.31	9.54	12.78
750.05	4.30	4.30	0.00	751.07	22.61	9.81	12.80
750.07	4.74	4.74	0.00	751.09	22.95	10.12	12.83
750.09	5.19	5.19	0.00	751.11	23.32	10.46	12.86
750.11	5.65	5.65	0.00	751.13	23.71	10.83	12.88
750.13	6.13	6.13	0.00	751.15	24.14	11.23	12.91
750.15	6.62	6.62	0.00	751.17	24.59	11.65	12.94
750.17	7.12	7.12	0.00	751.19	25.06	12.10	12.97
750.19	7.63	7.63	0.00	751.21	25.56	12.56	12.99
750.21	7.67	7.67	0.00	751.23	26.07	13.05	13.02
750.23	7.71	7.71	0.00	751.25	26.61	13.56	13.05
750.25	7.75	7.75	0.00				

Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

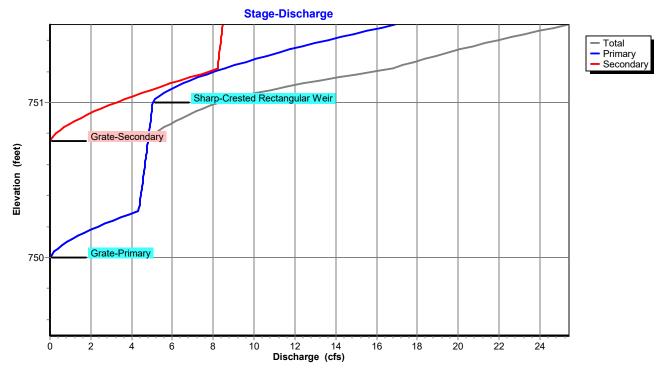
Stage-Area-Storage for Pond B-1: Bioretention B-1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
749.25	13,200		750.27	14,628	14,192
749.27	13,228	264	750.29	14,656	14,485
749.29	13,256	529	750.31	14,684	14,779
749.31	13,284	795	750.33	14,712	15,072
749.33	13,312	1,060	750.35	14,740	15,367
749.35	13,340	1,327	750.37	14,768	15,662
749.37	13,368	1,594	750.39	14,796	15,958
749.39	13,396	1,862	750.41	14,824	16,254
749.41	13,424	2,130	750.43	14,852	16,551
749.43	13,452	2,399	750.45	14,880	16,848
749.45	13,480	2,668	750.47	14,908	17,146
749.47	13,508	2,938	750.49	14,936	17,444
749.49	13,536	3,208	750.51	14,964	17,743
749.51	13,564	3,479	750.53	14,992	18,043
749.53	13,592	3,751	750.55	15,020	18,343
749.55	13,620	4,023	750.57	15,048	18,644
749.57	13,648	4,296	750.59	15,076	18,945
749.59	13,676	4,569	750.61	15,104	19,247
749.61	13,704	4,843	750.63	15,132	19,549
749.63	13,732	5,117	750.65	15,160	19,852
749.65	13,760	5,392	750.67	15,188	20,155
749.67	13,788	5,667	750.69	15,216	20,460
749.69	13,816	5,944	750.71	15,244	20,764
749.71	13,844	6,220	750.73	15,272	21,069
749.73	13,872	6,497	750.75	15,300	21,375
749.75	13,900	6,775	750.77	15,328	21,681
749.77	13,928	7,053	750.79	15,356	21,988
749.79	13,956	7,332	750.81	15,384	22,296
749.81	13,984	7,612	750.83	15,412	22,603
749.83	14,012	7,891	750.85	15,440	22,912
749.85	14,040	8,172	750.87	15,468	23,221
749.87	14,068	8,453	750.89	15,496	23,531
749.89	14,096	8,735	750.91	15,524	23,841
749.91	14,124	9,017	750.93	15,552	24,152
749.93	14,152	9,300	750.95	15,580	24,463
749.95	14,180	9,583	750.97	15,608	24,775
749.97	14,208	9,867	750.99	15,636	25,087
749.99	14,236	10,151	751.01	15,664	25,400
750.01	14,264	10,436	751.03	15,692	25,714
750.03	14,292	10,722	751.05	15,720	26,028
750.05	14,320	11,008	751.07	15,748	26,343
750.07	14,348	11,295	751.09	15,776	26,658
750.09	14,376	11,582	751.11	15,804	26,974
750.11	14,404	11,870	751.13	15,832	27,290
750.13	14,432	12,158	751.15	15,860	27,607
750.15	14,460	12,447	751.17	15,888	27,924
750.17	14,488	12,736	751.19	15,916	28,243
750.19	14,516	13,027	751.21	15,944	28,561
750.21	14,544	13,317	751.23	15,972	28,880
750.23	14,572	13,608	751.25	16,000	29,200
750.25	14,600	13,900			
			Į		

Summary for Pond B-2: Bioretention B-2

Inflow = 32.64 cfs (c Outflow = 9.85 cfs (c Primary = 4.73 cfs (c	69.16% Impervious, Inflow Depth = 2.99" for 25-yr event 11.96 hrs, Volume= 1.683 af 12.11 hrs, Volume= 1.489 af, Atten= 70%, Lag= 8.6 min 12.10 hrs, Volume= 1.311 af 12.11 hrs, Volume= 0.178 af						
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 751.09' @ 12.11 hrs Surf.Area= 26,907 sf Storage= 33,266 cf							
	Plug-Flow detention time= 137.0 min calculated for 1.489 af (88% of inflow) Center-of-Mass det. time= 79.7 min (867.6 - 787.9)						
	Storage Storage Description						
#1 749.50'	5,000 cf Surf. Storage (Prismatic) Listed below (Recalc)						
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)						
749.50 15,000	0 0						
751.50 30,000	45,000 45,000						
Device Routing In	vert Outlet Devices						
#1 Primary 747	50' 12.0" Round Culvert-Primary L= 105.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 747.50' / 747.25' S= 0.0024 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf						
#2 Device 1 750							
#3 Secondary 746							
#4 Device 3 750							
#5 Primary 751							
Primary OutFlow Max=4.64 cfs @ 12.10 hrs HW=751.09' TW=749.51' (Dynamic Tailwater)							

-**1=Culvert-Primary** (Outlet Controls 3.81 cfs @ 4.86 fps) **—2=Grate-Primary** (Passes 3.81 cfs of 20.07 cfs potential flow)


-5=Sharp-Crested Rectangular Weir (Weir Controls 0.82 cfs @ 0.96 fps)

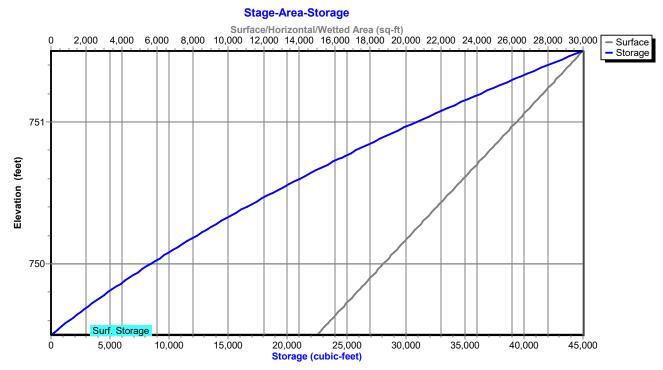
Secondary OutFlow Max=5.04 cfs @ 12.11 hrs HW=751.08' TW=0.00' (Dynamic Tailwater)

-3=Culvert-Secondary (Passes 5.04 cfs of 8.10 cfs potential flow) -4=Grate-Secondary (Weir Controls 5.04 cfs @ 1.89 fps)

Proposed Conditions I

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Pond B-2: Bioretention B-2


Proposed Conditions - I

Printed 9/29/2022

Page 77

Type II 24-hr 25-yr Rainfall=3.87"

Proposed Conditions ITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond B-2: Bioretention B-2

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
749.50	0.00	0.00	0.00	750.52	4.57	4.57	0.00
749.52	0.00	0.00	0.00	750.54	4.59	4.59	0.00
749.54	0.00	0.00	0.00	750.56	4.61	4.61	0.00
749.56	0.00	0.00	0.00	750.58	4.63	4.63	0.00
749.58	0.00	0.00	0.00	750.60	4.65	4.65	0.00
749.60	0.00	0.00	0.00	750.62	4.67	4.67	0.00
749.62	0.00	0.00	0.00	750.64	4.69	4.69	0.00
749.64	0.00	0.00	0.00	750.66	4.71	4.71	0.00
749.66	0.00	0.00	0.00	750.68	4.73	4.73	0.00
749.68	0.00	0.00	0.00	750.70	4.75	4.75	0.00
749.70	0.00	0.00	0.00	750.72	4.77	4.77	0.00
749.72	0.00	0.00	0.00	750.74	4.79	4.79	0.00
749.74	0.00	0.00	0.00	750.76	4.84	4.81	0.03
749.76	0.00	0.00	0.00	750.78	4.97	4.83	0.14
749.78	0.00	0.00	0.00	750.80	5.14	4.85	0.29
749.80	0.00	0.00	0.00	750.82	5.35	4.87	0.48
749.82	0.00	0.00	0.00	750.84	5.59	4.89	0.71
749.84	0.00	0.00	0.00	750.86	5.86	4.91	0.95
749.86	0.00	0.00	0.00	750.88	6.15	4.92	1.23
749.88	0.00	0.00	0.00	750.90	6.46	4.94	1.52
749.90	0.00	0.00	0.00	750.92	6.79	4.96	1.83
749.92	0.00	0.00	0.00	750.94	7.15	4.98	2.17
749.94	0.00	0.00	0.00	750.96	7.52	5.00	2.52
749.96	0.00	0.00	0.00	750.98	7.90	5.02	2.89
749.98	0.00	0.00	0.00	751.00	8.31	5.04	3.27
750.00	0.00	0.00	0.00	751.02	8.82	5.15	3.67
750.02	0.07	0.07	0.00	751.04	9.42	5.33	4.09
750.04	0.21	0.21	0.00	751.06	10.08	5.57	4.52
750.06	0.38	0.38	0.00	751.08	10.81	5.85	4.96
750.08	0.59	0.59	0.00	751.10	11.57	6.16	5.42
750.10	0.83	0.83	0.00	751.12	12.39	6.50	5.89
750.12	1.09	1.09	0.00	751.14	13.24	6.87	6.37
750.14	1.37	1.37	0.00	751.16	14.13	7.27	6.87
750.16	1.67	1.67	0.00	751.18	15.06	7.69	7.38
750.18	2.00	2.00	0.00	751.20	16.02	8.13	7.90
750.20	2.34	2.34	0.00	751.22	16.81	8.59	8.22
750.22	2.70	2.70	0.00	751.24	17.31	9.08	8.23
750.24	3.08	3.08	0.00	751.26	17.83	9.58	8.25
750.26	3.47	3.47	0.00	751.28	18.37	10.10	8.27
750.28	3.88	3.88	0.00	751.30	18.93	10.64	8.29
750.30	4.30	4.30	0.00	751.32	19.50 20.10	11.20 11.78	8.30 8.32
750.32 750.34	4.37 4.39	4.37 4.39	0.00 0.00	751.34 751.36	20.10	12.37	8.32 8.34
750.34	4.39	4.39	0.00	751.30	20.70	12.37	8.34 8.35
750.38	4.43	4.41	0.00	751.30	21.33	12.97	8.35
750.38	4.45	4.43	0.00	751.40	21.97	14.23	8.39
750.40	4.45	4.43	0.00	751.42	23.29	14.23	8.41
750.42	4.49	4.47	0.00	751.44	23.25	14.00	8.42
750.44	4.51	4.49	0.00	751.48	24.67	16.23	8.44
750.48	4.53	4.53	0.00	751.50	25.38	16.92	8.46
750.50	4.55	4.55	0.00		20.00	10.02	0.40
			0.00				

Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-2: Bioretention B-2

Elevation	Surface	Storago	Elevation	Surface	Storago
(feet)	(sq-ft)	Storage (cubic-feet)	(feet)	(sq-ft)	Storage (cubic-feet)
749.50	15,000	0	750.52	22,650	19,201
749.52	15,150	301	750.52	22,800	19,656
749.54	15,300	606	750.56	22,950	20,113
749.56	15,450	913	750.58	23,100	20,574
749.58	15,600	1,224	750.60	23,250	21,038
749.60	15,750	1,538	750.62	23,400	21,504
749.62	15,900	1,854	750.64	23,550	21,973
749.64	16,050	2,173	750.66	23,700	22,446
749.66	16,200	2,496	750.68	23,850	22,921
749.68	16,350	2,821	750.70	24,000	23,400
749.70	16,500	3,150	750.72	24,150	23,882
749.72	16,650	3,482	750.74	24,300	24,366
749.74	16,800	3,816	750.76	24,450	24,853
749.76	16,950	4,153	750.78	24,600	25,344
749.78	17,100	4,494	750.80	24,750	25,837
749.80	17,250	4,837	750.82	24,900	26,334
749.82	17,400	5,184	750.84	25,050	26,834
749.84	17,550	5,534	750.86	25,200	27,336
749.86	17,700	5,886	750.88	25,350	27,841
749.88	17,850	6,241	750.90	25,500	28,350
749.90	18,000	6,600	750.92	25,650	28,861
749.92	18,150	6,961	750.94	25,800	29,376
749.94	18,300	7,326	750.96	25,950	29,894
749.96	18,450	7,694	750.98	26,100	30,414
749.98	18,600	8,064	751.00	26,250	30,938
750.00	18,750	8,438	751.02	26,400	31,464
750.02	18,900	8,814	751.04	26,550	31,993
750.04	19,050	9,193	751.06	26,700	32,526
750.06	19,200	9,576	751.08	26,850	33,062
750.08	19,350	9,962	751.10	27,000	33,600
750.10	19,500	10,350	751.12	27,150	34,142
750.12	19,650	10,742	751.14	27,300	34,686
750.14	19,800	11,136	751.16	27,450	35,233
750.16	19,950	11,533	751.18	27,600	35,784
750.18	20,100	11,934	751.20	27,750	36,338
750.20	20,250	12,338	751.22	27,900	36,894
750.22	20,400	12,744	751.24	28,050	37,454
750.24	20,550	13,154	751.26	28,200	38,016
750.26	20,700	13,566	751.28	28,350	38,581
750.28	20,850	13,981	751.30	28,500	39,150
750.30	21,000	14,400	751.32	28,650	39,722
750.32	21,150	14,822	751.34	28,800	40,296
750.34	21,300	15,246	751.36	28,950	40,874
750.36	21,450	15,674	751.38	29,100	41,454
750.38	21,600	16,104	751.40	29,250	42,037
750.40	21,750	16,537	751.42	29,400	42,624
750.42	21,900	16,974	751.44	29,550	43,214
750.44 750.46	22,050	17,414	751.46 751.48	29,700	43,806
750.46	22,200 22,350	17,856 18,302	751.48	29,850 30,000	44,402 45,000
750.48	22,500	18,750	731.00	50,000	+5,000
100.00	22,000	10,750			
			•		

Summary for Pond B-3: Bioretention B-3

Proposed Conditions - I

Printed 9/29/2022

Page 80

Inflow = 26.84 cfs @ Outflow = 6.03 cfs @	6.83% Impervious, Inflow Depth = 3.20" for 25-yr event 11.96 hrs, Volume= 1.418 af 12.13 hrs, Volume= 1.263 af, Atten= 78%, Lag= 10.3 min 12.13 hrs, Volume= 1.263 af					
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 751.67' @ 12.13 hrs Surf.Area= 22,034 sf Storage= 28,458 cf						
Plug-Flow detention time= 138.2 min calculated for 1.263 af (89% of inflow) Center-of-Mass det. time= 82.7 min (860.4 - 777.7)						
	torage Storage Description					
#1 750.00' 36,	000 cf Surf. Storage (Prismatic) Listed below (Recalc)					
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)					
750.00 12,000	0 0					
752.00 24,000	36,000 36,000					
,						
Device Routing Inver	t Outlet Devices					
#1 Primary 746.50	8.0" Round Culvert-Primary					
,	L= 30.0' CPP, square edge headwall, Ke= 0.500					
	Inlet / Outlet Invert= 746.50' / 746.00' S= 0.0167 '/' Cc= 0.900					
	n= 0.012, Flow Area= 0.35 sf					
#2 Device 1 750.50						
	Limited to weir flow at low heads					
#3 Primary 751.50	' 10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)					
Primary OutFlow Max=5.99 cfs @ 12.13 hrs HW=751.67' TW=0.00' (Dynamic Tailwater) 1=Culvert-Primary (Barrel Controls 3.69 cfs @ 10.58 fps)						

1-2=Grate-Primary (Passes 3.69 cfs of 20.84 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 2.30 cfs @ 1.35 fps)

Proposed Conditions I

Stage-Discharge 752 - Primary Sharp-Crested Rectangular Weir Elevation (feet) 751 Grate-Primary 750 2 3 4 7 8 Discharge (cfs) 1 5 6 ģ 10 11 12 13 14 15 Ò Pond B-3: Bioretention B-3 Stage-Area-Storage Surface/Horizontal/Wetted Area (sq-ft) 000 10,000 12,000 14,000 16,000 2,000 4,000 6,000 8,000 18,000 20,000 22,000 24,000 0 Surface 752 Storage Elevation (feet) 751 St 750 Ó 5,000 10,000 15,000 20,000 25,000 30,000 35,000

Storage (cubic-feet)

Pond B-3: Bioretention B-3

Proposed Conditions IType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

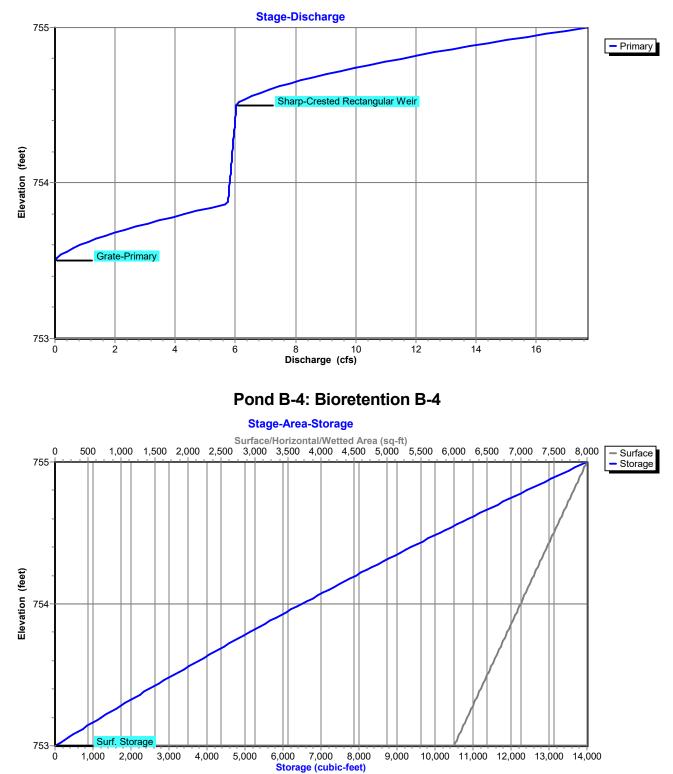
Proposed Conditions - I Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 82

Stage-Discharge for Pond B-3: Bioretention B-3

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
		750.51		751.02	3.44	751.53	
750.00	0.00 0.00	750.51	0.03 0.07	751.02	3.44 3.44	751.53	3.81 3.91
750.01				751.03			
750.02 750.03	0.00 0.00	750.53 750.54	0.14 0.21		3.45	751.55	4.01
				751.05	3.45	751.56	4.13
750.04	0.00	750.55	0.29	751.06	3.46	751.57	4.26
750.05	0.00	750.56	0.38	751.07	3.46	751.58	4.40
750.06	0.00	750.57	0.48	751.08	3.46	751.59	4.55
750.07	0.00	750.58	0.59	751.09	3.47	751.60	4.70
750.08	0.00	750.59	0.71	751.10	3.47	751.61	4.86
750.09	0.00	750.60	0.83	751.11	3.48	751.62	5.03
750.10	0.00	750.61	0.95	751.12	3.48	751.63	5.21
750.11	0.00	750.62	1.09	751.13	3.48	751.64	5.39
750.12	0.00	750.63	1.23	751.14	3.49	751.65	5.58
750.13	0.00	750.64	1.37	751.15	3.49	751.66	5.78
750.14	0.00	750.65	1.52	751.16	3.50	751.67	5.98
750.15	0.00	750.66	1.67	751.17	3.50	751.68	6.19
750.16	0.00	750.67	1.83	751.18	3.50	751.69	6.40
750.17	0.00	750.68	2.00	751.19	3.51	751.70	6.62
750.18	0.00	750.69	2.17	751.20	3.51	751.71	6.84
750.19	0.00	750.70	2.34	751.21	3.52	751.72	7.07
750.20	0.00	750.71	2.52	751.22	3.52	751.73	7.31
750.21	0.00	750.72	2.70	751.23	3.52	751.74	7.55
750.22	0.00	750.73	2.89	751.24	3.53	751.75	7.79
750.23	0.00	750.74	3.08	751.25	3.53	751.76	8.04
750.24	0.00	750.75	3.27	751.26	3.54	751.77	8.29
750.25	0.00	750.76	3.33	751.27	3.54	751.78	8.55
750.26	0.00	750.77	3.33	751.28	3.54	751.79	8.81
750.27	0.00	750.78	3.34	751.29	3.55	751.80	9.08
750.28	0.00	750.79	3.34	751.30	3.55	751.81	9.35
750.29	0.00	750.80	3.35	751.31	3.56	751.82	9.63
750.30	0.00	750.81	3.35	751.32	3.56	751.83	9.91
750.31	0.00	750.82	3.36	751.33	3.56	751.84	10.19
750.32	0.00	750.83	3.36	751.34	3.57	751.85	10.48
750.33	0.00	750.84	3.36	751.35	3.57	751.86	10.78
750.34	0.00	750.85	3.37	751.36	3.58	751.87	11.07
750.35	0.00	750.86	3.37	751.37	3.58	751.88	11.37
750.36	0.00	750.87	3.38	751.38	3.58	751.89	11.68
750.37	0.00	750.88	3.38	751.39	3.59	751.90	11.98
750.38	0.00	750.89	3.39	751.40	3.59	751.91	12.30
750.39	0.00	750.90	3.39	751.41	3.60	751.92	12.61
750.40	0.00	750.91	3.39	751.42	3.60	751.93	12.93
750.41	0.00	750.92	3.40	751.43	3.60	751.94	13.25
750.42	0.00	750.93	3.40	751.44	3.61	751.95	13.58
750.43	0.00	750.94	3.41	751.45	3.61	751.96	13.91
750.44	0.00	750.95	3.41	751.46	3.62	751.97	14.24
750.45	0.00	750.96	3.41	751.47	3.62	751.98	14.58
750.46	0.00	750.97	3.42	751.48	3.62	751.99	14.92
750.47	0.00	750.98	3.42	751.49	3.63	752.00	15.26
750.48	0.00	750.99	3.43	751.50	3.63		
750.49	0.00	751.00	3.43	751.51	3.67		
750.50	0.00	751.01	3.43	751.52	3.73		
		l		l			

Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-3: Bioretention B-3


		•	I		•
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
750.00	12,000	0	751.02	18,120	15,361
750.02	12,120	241	751.04	18,240	15,725
750.04	12,240	485	751.06	18,360	16,091
750.06	12,360	731	751.08	18,480	16,459
750.08	12,480	979	751.10	18,600	16,830
750.10	12,600	1,230	751.12	18,720	17,203
750.12	12,720	1,483	751.14	18,840	17,579
750.14	12,840	1,739	751.16	18,960	17,957
750.16	12,960	1,997	751.18	19,080	18,337
750.18	13,080	2,257	751.20	19,200	18,720
750.20	13,200	2,520	751.20	19,320	
					19,105
750.22	13,320	2,785	751.24	19,440	19,493
750.24	13,440	3,053	751.26	19,560	19,883
750.26	13,560	3,323	751.28	19,680	20,275
750.28	13,680	3,595	751.30	19,800	20,670
750.30	13,800	3,870	751.32	19,920	21,067
750.32	13,920	4,147	751.34	20,040	21,467
750.34	14,040	4,427	751.36	20,160	21,869
750.36	14,160	4,709	751.38	20,280	22,273
750.38	14,280	4,993	751.40	20,400	22,680
750.40	14,400	5,280	751.42	20,520	23,089
750.42	14,520	5,569	751.44	20,640	23,501
750.44	14,640	5,861	751.46	20,760	23,915
750.46	14,760	6,155	751.48	20,880	24,331
750.48	14,880	6,451	751.50	21,000	24,750
750.50	15,000	6,750	751.52	21,120	25,171
750.52	15,120	7,051	751.54	21,240	25,595
750.54	15,240	7,355	751.56	21,360	26,021
750.56	15,360	7,661	751.58	21,480	26,449
750.58	15,480	7,969	751.60	21,600	26,880
750.60	15,600	8,280	751.62	21,720	27,313
750.62	15,720	8,593	751.64	21,840	27,749
750.64	15,840	8,909	751.66	21,960	28,187
750.66	15,960	9,227	751.68	22,080	28,627
750.68	16,080	9,547	751.70	22,200	29,070
750.70	16,200	9,870	751.72	22,320	29,515
750.72	16,320	10,195	751.74	22,440	29,963
750.74	16,440	10,523	751.76	22,560	30,413
750.76	16,560	10,853	751.78	22,680	30,865
750.78	16,680	11,185	751.80	22,800	31,320
750.80	16,800	11,520	751.82	22,920	31,777
750.80	16,920		751.82	23,040	32,237
		11,857			
750.84	17,040	12,197	751.86	23,160	32,699
750.86	17,160	12,539	751.88	23,280	33,163
750.88	17,280	12,883	751.90	23,400	33,630
750.90	17,400	13,230	751.92	23,520	34,099
750.92	17,520	13,579	751.94	23,640	34,571
750.94	17,640	13,931	751.96	23,760	35,045
750.96	17,760	14,285	751.98	23,880	35,521
750.98	17,880	14,641	752.00	24,000	36,000
751.00	18,000	15,000			
			l		

Summary for Pond B-4: Bioretention B-4

Inflow = 12.97 cfs @ Outflow = 5.96 cfs @	8.93% Impervious, Inflow Depth = 3.20" for 25-yr event 11.96 hrs, Volume= 0.685 af 12.07 hrs, Volume= 0.613 af, Atten= 54%, Lag= 6.5 min 12.07 hrs, Volume= 0.613 af					
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 754.33' @ 12.07 hrs Surf.Area= 7,334 sf Storage= 8,896 cf						
Plug-Flow detention time= 99.9 min calculated for 0.613 af (90% of inflow) Center-of-Mass det. time= 46.0 min (823.7 - 777.7)						
	torage Storage Description					
#1 753.00' 14	000 cf Surf. Storage (Prismatic) Listed below (Recalc)					
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)					
753.00 6,000	0 0					
755.00 8,000	14,000 14,000					
Device Routing Inve						
#1 Primary 749.50	 12.0" Round Culvert-Primary L= 230.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 749.50' / 746.50' S= 0.0130 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf 					
#2 Device 1 753.50						
#3 Primary 754.50						
Primary OutFlow Max=5.95 cfs @ 12.07 hrs HW=754.32' TW=0.00' (Dynamic Tailwater) 1=Culvert-Primary (Barrel Controls 5.95 cfs @ 7.58 fps)						

1-2=Grate-Primary (Passes 5.95 cfs of 17.46 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Conditions I Prepared by Pinewoods Engineering, P.C.

Pond B-4: Bioretention B-4

Proposed Conditions IType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 86

Stage-Discharge for Pond B-4: Bioretention B-4

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
753.00	0.00	753.51	0.03	754.02	5.82	754.53	6.21
753.01	0.00	753.52	0.07	754.03	5.82	754.54	6.31
753.02	0.00	753.53	0.14	754.04	5.83	754.55	6.41
753.03	0.00	753.54	0.21	754.05	5.83	754.56	6.53
753.04	0.00	753.55	0.29	754.06	5.84	754.57	6.66
753.05	0.00	753.56	0.38	754.07	5.84	754.58	6.80
753.06	0.00	753.57	0.48	754.08	5.84	754.59	6.95
753.07	0.00	753.58	0.59	754.09	5.85	754.60	7.10
753.08	0.00	753.59	0.71	754.10	5.85	754.61	7.27
753.09	0.00	753.60	0.83	754.11	5.86	754.62	7.44
753.10	0.00	753.61	0.95	754.12	5.86	754.63	7.61
753.11	0.00	753.62	1.09	754.13	5.87	754.64	7.80
753.12	0.00	753.63	1.23	754.14	5.87	754.65	7.99
753.13	0.00	753.64	1.37	754.15	5.88	754.66	8.18
753.14	0.00	753.65	1.52	754.16	5.88	754.67	8.38
753.15	0.00	753.66	1.67	754.17	5.88	754.68	8.59
753.16	0.00	753.67	1.83	754.18	5.89	754.69	8.81
753.17	0.00	753.68	2.00	754.19	5.89	754.70	9.03
753.18	0.00	753.69	2.17	754.20	5.90	754.71	9.25
753.19	0.00	753.70	2.34	754.21	5.90	754.72	9.48
753.20	0.00	753.71	2.52	754.22	5.91	754.73	9.72
753.21	0.00	753.72	2.70	754.23	5.91	754.74	9.96
753.22	0.00	753.73	2.89	754.24	5.91	754.75	10.20
753.23	0.00	753.74	3.08	754.25	5.92	754.76	10.45
753.24	0.00	753.75	3.27	754.26	5.92	754.77	10.71
753.25	0.00	753.76	3.47	754.27	5.93	754.78	10.96
753.26	0.00	753.77	3.67	754.28	5.93	754.79	11.23
753.27	0.00	753.78	3.88	754.29	5.94	754.80	11.50
753.28	0.00	753.79	4.09	754.30	5.94	754.81	11.77
753.29	0.00	753.80	4.30	754.31	5.95	754.82	12.05
753.30	0.00	753.81	4.52	754.32	5.95	754.83	12.33
753.31	0.00	753.82	4.74	754.33	5.95	754.84	12.61
753.32	0.00	753.83	4.96	754.34	5.96	754.85	12.90
753.33	0.00	753.84	5.19	754.35	5.96	754.86	13.19
753.34	0.00	753.85	5.42	754.36	5.97	754.87	13.49
753.35	0.00	753.86	5.65	754.37	5.97	754.88	13.79
753.36	0.00	753.87	5.75	754.38	5.98	754.89	14.10
753.37	0.00	753.88	5.75	754.39	5.98	754.90	14.40
753.38	0.00	753.89	5.76	754.40	5.98	754.91	14.72
753.39	0.00	753.90	5.76	754.41	5.99	754.92	15.03
753.40	0.00	753.91	5.77	754.42	5.99	754.93	15.35
753.41	0.00	753.92	5.77	754.43	6.00	754.94	15.67
753.42	0.00	753.93	5.78	754.44	6.00	754.95	16.00
753.43	0.00	753.94	5.78	754.45	6.01	754.96	16.33
753.44	0.00	753.95	5.79	754.46	6.01	754.97	16.66
753.45	0.00	753.96	5.79	754.47	6.01	754.98	17.00
753.46	0.00	753.97	5.80	754.48	6.02	754.99	17.34
753.47	0.00	753.98	5.80	754.49	6.02	755.00	17.68
753.48	0.00	753.99	5.80	754.50	6.03		
753.49	0.00	754.00	5.81	754.51	6.06		
753.50	0.00	754.01	5.81	754.52	6.13		
		l		I			

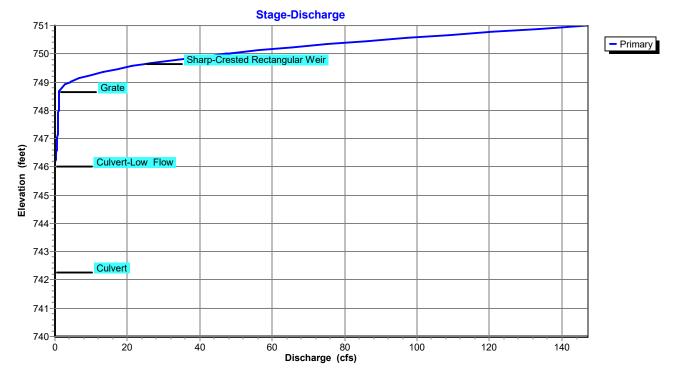
Proposed Conditions ITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-4: Bioretention B-4

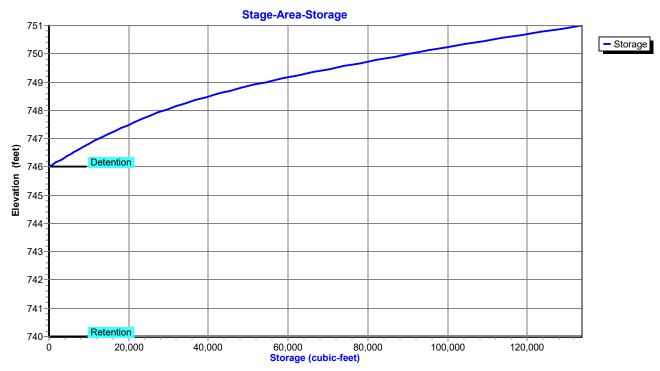
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
753.00	6,000	0	754.02	7,020	6,640
753.02	6,020	120	754.04	7,040	6,781
753.04	6,040	241	754.06	7,060	6,922
753.06	6,060	362	754.08	7,080	7,063
753.08	6,080	483	754.10	7,100	7,205
753.10	6,100	605	754.12	7,120	7,347
753.12	6,120	727	754.14	7,140	7,490
753.14	6,140	850	754.16	7,160	7,633
753.16	6,160	973	754.18	7,180	7,776
753.18	6,180	1,096	754.20	7,200	7,920
753.20	6,200	1,220	754.22	7,220	8,064
753.22	6,220	1,344	754.24	7,240	8,209
753.24	6,240	1,469	754.26	7,260	8,354
753.26	6,260	1,594	754.28	7,280	8,499
753.28	6,280	1,719	754.30	7,300	8,645
753.30	6,300	1,845	754.32	7,320	8,791
753.32	6,320	1,971	754.34	7,340	8,938
753.34	6,340	2,098	754.36	7,360	9,085
753.36	6,360	2,225	754.38	7,380	9,232
753.38	6,380	2,352	754.40	7,400	9,380
753.40	6,400	2,480	754.42	7,420	9,528
753.42	6,420	2,608	754.44	7,440	9,677
753.44	6,440	2,737	754.46	7,460	9,826
753.46	6,460	2,866	754.48	7,480	9,975
753.48 753.50	6,480 6,500	2,995	754.50 754.52	7,500 7,520	10,125
753.50	6,520	3,125 3,255	754.52	7,520	10,275 10,426
753.54	6,540	3,386	754.56	7,560	10,420
753.56	6,560	3,517	754.58	7,580	10,728
753.58	6,580	3,648	754.60	7,600	10,880
753.60	6,600	3,780	754.62	7,620	11,032
753.62	6,620	3,912	754.64	7,640	11,185
753.64	6,640	4,045	754.66	7,660	11,338
753.66	6,660	4,178	754.68	7,680	11,491
753.68	6,680	4,311	754.70	7,700	11,645
753.70	6,700	4,445	754.72	7,720	11,799
753.72	6,720	4,579	754.74	7,740	11,954
753.74	6,740	4,714	754.76	7,760	12,109
753.76	6,760	4,849	754.78	7,780	12,264
753.78	6,780	4,984	754.80	7,800	12,420
753.80	6,800	5,120	754.82	7,820	12,576
753.82	6,820	5,256	754.84	7,840	12,733
753.84	6,840	5,393	754.86	7,860	12,890
753.86	6,860	5,530	754.88	7,880	13,047
753.88	6,880	5,667	754.90	7,900	13,205
753.90	6,900	5,805	754.92	7,920	13,363
753.92	6,920	5,943	754.94	7,940	13,522
753.94	6,940	6,082	754.96	7,960	13,681
753.96	6,960	6,221	754.98	7,980	13,840
753.98 754.00	6,980 7,000	6,360 6,500	755.00	8,000	14,000
104.00	7,000	0,000			
			I		

Inflow Area =	22.268 ac, 71.72% Impervious, Inflow D	epth = 2.68" for 25-yr event
Inflow =	60.69 cfs @ 11.96 hrs, Volume=	4.967 af
Outflow =	19.58 cfs @ 12.16 hrs, Volume=	4.959 af, Atten= 68%, Lag= 11.8 min
Primary =	19.58 cfs @ 12.16 hrs, Volume=	4.959 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 749.52' @ 12.16 hrs Surf.Area= 46,953 sf Storage= 72,491 cf


Plug-Flow detention time= 272.7 min calculated for 4.959 af (100% of inflow) Center-of-Mass det. time= 271.2 min (1,098.5 - 827.3)

Volume	Inver	rt Avai	I.Storage	Storage Description	on			
#1	740.00	0.00' 0 c		Retention (Irregular) Listed below (Recalc)				
#2	746.00	.00' 133,484 cf		24,499 cf Overall x 0.0% Voids Detention (Irregular) Listed below (Recalc)				
<u><u></u><i>π</i><u></u></u>			33,484 cf	Total Available Storage				
			50,10101		orago			
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
740.00		651	103.0	0	0	651		
741.50		2,244	1,016.0	2,052	2,052	81,955		
745.00		4,383	391.0	11,390	13,442	151,977		
746.50	0	10,839	632.0	11,057	24,499	171,611		
Elevatior	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
746.00	0	11,459	563.0	0	0	11,459		
747.00	0	13,760	587.0	12,592	12,592	13,729		
748.00	0	19,120	930.0	16,367	28,959	55,143		
749.00	0	32,528	1,810.0	25,529	54,488	247,025		
750.00		39,522	1,836.0	35,968	90,456	254,786		
751.00	D	46,632	1,863.0	43,028	133,484	262,946		
Device	Routing	In	vert Outl	et Devices				
	Primary	742	.25' 30.0	" Round Culvert				
	L = 85.0' CPP, square edge headwall, Ke= 0.500							
						= 0.0019 '/' Cc= 0.900		
			n= 0	.012, Flow Area=	4.91 sf			
#2			D.0" W x 30.0" H 9° Grate C= 0.600					
			Limi	Limited to weir flow at low heads				
	Primary	749		20.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
#4	Device 1	746		6.0" Round Culvert-Low Flow				
	L= 15.0' CPP, projecting, no headwall, Ke= 0.900							
	Inlet / Outlet Invert= 745.50' / 746.00' S= -0.0333 '/' Cc= 0.900							
			n= 0	.012, Flow Area=	0.20 st			


Primary OutFlow Max=19.52 cfs @ 12.16 hrs HW=749.52' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 19.52 cfs of 58.01 cfs potential flow) 2=Grate (Weir Controls 18.17 cfs @ 2.70 fps) 4=Culvert-Low Flow (Inlet Controls 1.35 cfs @ 6.88 fps) 2=Charm Created Pactage Wair (Controls 0.00 cfa)

-3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond P-1: Wet Pond P-1

Proposed Conditions I

Pond P-1: Wet Pond P-1

Proposed Conditions IType II 24-hiPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond P-1: Wet Pond P-1

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
740.00	0.00	743.06	0.00	746.12	0.03	749.18	7.99
740.06	0.00	743.12	0.00	746.18	0.07	749.24	9.69
740.12	0.00	743.18	0.00	746.24	0.12	749.30	11.54
740.18	0.00	743.24	0.00	746.30	0.18	749.36	13.52
740.24	0.00	743.30	0.00	746.36	0.24	749.42	15.63
740.30	0.00	743.36	0.00	746.42	0.31	749.48	17.85
740.36	0.00	743.42	0.00	746.48	0.36	749.54	20.19
740.42	0.00	743.48	0.00	746.54	0.40	749.60	22.63
740.48	0.00	743.54	0.00	746.60	0.44	749.66	25.23
740.54	0.00	743.60	0.00	746.66	0.48	749.72	29.02
740.60	0.00	743.66	0.00	746.72	0.51	749.78	33.50
740.66	0.00	743.72	0.00	746.78	0.54	749.84	36.78
740.72	0.00	743.78	0.00	746.84	0.57	749.90	40.44
740.78	0.00	743.84	0.00	746.90	0.60	749.96	44.42
740.84	0.00	743.90	0.00	746.96	0.63	750.02	48.69
740.90	0.00	743.96	0.00	747.02	0.65	750.08	53.22
740.96	0.00	744.02	0.00	747.08	0.68	750.14	58.00
741.02	0.00	744.08	0.00	747.14	0.70	750.20	63.01
741.08	0.00	744.14	0.00	747.20	0.73	750.26	68.22
741.14	0.00	744.20	0.00	747.26	0.75	750.32	73.65
741.20	0.00	744.26	0.00	747.32	0.77	750.38	79.26
741.26	0.00	744.32	0.00	747.38	0.79	750.44	85.06
741.32	0.00	744.38	0.00	747.44	0.81	750.50	91.04
741.38	0.00	744.44	0.00	747.50	0.83	750.56	97.19
741.44	0.00	744.50	0.00	747.56	0.85	750.62	103.50
741.50	0.00	744.56	0.00	747.62	0.87	750.68	109.97
741.56	0.00	744.62	0.00	747.68	0.89	750.74	116.60
741.62	0.00	744.68	0.00	747.74	0.91	750.80	123.37
741.68	0.00	744.74	0.00	747.80	0.93	750.86	130.29
741.74	0.00	744.80	0.00	747.86	0.95	750.92	137.35
741.80	0.00	744.86	0.00	747.92	0.96	750.98	144.55
741.86	0.00	744.92	0.00	747.98	0.98		
741.92	0.00	744.98	0.00	748.04	1.00		
741.98	0.00	745.04	0.00	748.10	1.02		
742.04	0.00	745.10	0.00	748.16	1.03		
742.10	0.00	745.16	0.00	748.22	1.05		
742.16	0.00	745.22	0.00	748.28	1.06		
742.22	0.00	745.28	0.00	748.34	1.08		
742.28	0.00	745.34	0.00	748.40	1.09		
742.34	0.00	745.40	0.00	748.46	1.11		
742.40	0.00	745.46	0.00	748.52	1.12		
742.46	0.00	745.52	0.00	748.58	1.14		
742.52	0.00	745.58	0.00	748.64	1.15		
742.58	0.00	745.64	0.00	748.70	1.27		
742.64	0.00	745.70	0.00	748.76	1.54		
742.70	0.00	745.76	0.00	748.82	1.95		
742.76	0.00	745.82	0.00	748.88	2.51		
742.82	0.00	745.88	0.00	748.94	3.21		
742.88	0.00	745.94	0.00	749.00	4.07		
742.94	0.00	746.00	0.00	749.06	5.12		
743.00	0.00	746.06	0.01	749.12	6.46		
		I					

Proposed Conditions IType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond P-1: Wet Pond P-1

		I ·	-
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
740.00	0	747.65	22,616
740.15	0	747.80	25,249
740.30	0	747.95	28,010
740.45	0	748.10	30,929
740.60	0	748.25	34,112
740.75	0 0	748.40	37,575
740.90 741.05	0	748.55 748.70	41,333 45,396
741.20	0	748.85	49,777
741.35	0	749.00	54,488
741.50	0	749.15	59,442
741.65	0 0	749.30	64,548
741.80	Ő	749.45	69,809
741.95	0	749.60	75,227
742.10	0	749.75	80,803
742.25	0	749.90	86,540
742.40	0	750.05	92,440
742.55	0	750.20	98,497
742.70	0	750.35	104,710
742.85	0	750.50	111,081
743.00	0	750.65	117,612
743.15	0	750.80	124,305
743.30	0	750.95	131,161
743.45	0		
743.60	0		
743.75	0 0		
743.90 744.05	0		
744.03	0		
744.35	0		
744.50	Ŭ Ŭ		
744.65	0 0		
744.80	Ő		
744.95	0		
745.10	0		
745.25	0		
745.40	0		
745.55	0		
745.70	0		
745.85	0		
746.00	0		
746.15	1,744		
746.30	3,537		
746.45	5,382		
746.60 746.75	7,278 9,227		
746.90	11,228		
740.90	13,286		
747.20	15,444		
747.35	17,716		
747.50	20,105		
	,	l	

Summary for Link 1AT: DA #1A Total

Inflow Are	a =	56.205 ac, 63.22% Impervious, Inflow Depth = 2.79" for 25-yr event
Inflow	=	94.15 cfs @ 12.22 hrs, Volume= 13.074 af
Primary	=	94.15 cfs @ 12.22 hrs, Volume= 13.074 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-1: DP #1 - Rush Crk Trib.

Inflow Are	a =	56.205 ac, 63.22% Impervious, Inflow Depth = 2.79" for 25-yr event
Inflow	=	94.15 cfs @ 12.22 hrs, Volume= 13.074 af
Primary	=	94.15 cfs @ 12.22 hrs, Volume= 13.074 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP #2 - Smokes Crk

 Inflow Area =
 83.814 ac, 88.53% Impervious, Inflow Depth =
 3.40" for 25-yr event

 Inflow =
 236.58 cfs @
 12.02 hrs, Volume=
 23.780 af

 Primary =
 236.58 cfs @
 12.02 hrs, Volume=
 23.780 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

25-yr Primary Outflow Imported from Proposed Conditions II~Link DP-2.hce

Summary for Link DP-3: DP #3 - Rush Crk

 Inflow Area =
 55.981 ac, 45.79% Impervious, Inflow Depth > 2.59" for 25-yr event

 Inflow =
 78.16 cfs @ 12.34 hrs, Volume=
 12.066 af

 Primary =
 78.16 cfs @ 12.34 hrs, Volume=
 12.066 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

25-yr Primary Outflow Imported from Proposed Conditions III~Link DP-3.hce

Summary for Link PT: Proposed Conditions Total Offsite

Inflow Are	ea =	196.000 ac, 69.06% Impervious, Inflow Depth > 3.00" for 25-yr event
Inflow	=	355.68 cfs @ 12.18 hrs, Volume= 48.920 af
Primary	=	355.68 cfs @ 12.18 hrs, Volume= 48.920 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 1A-I: DA #1A-I

Runoff = 84.08 cfs @ 12.27 hrs, Volume= 8.748 af, Depth= 4.03"

	Area ((ac)	CN	Desc	cription		
	0.0	000	74	>75%	6 Grass co	over, Good	, HSG C
	11.	558	80	>75%	6 Grass co	over, Good	, HSG D
	0.0	000	98	Pave	ed parking	HSG C	
	13.4	442	98	Pave	ed parking	HSG D	
	0.0	000	96	Grav	el surface	, HSG C	
	0.0	000	96	Grav	el surface	, HSG D	
	1.0	044	77	Woo	ds, Good,	HSG D	
	26.0	044	89		ghted Aver		
	12.0	602		48.3	9% Pervio	us Area	
	13.4	442		51.6	1% Imperv	vious Area	
	_		_			•	-
,	Τc	Length		Slope	Velocity	Capacity	Description
	min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
2	26.7	150	0.	0150	0.09		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.20"
	2.9	340	0.	0150	1.97		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	0.4	75	0.	0200	2.87		Shallow Concentrated Flow,
	~ ~				. = -		Paved Kv= 20.3 fps
	2.8	760			4.50		Direct Entry, Pipe Flow
3	32.8	1,325	5 To	otal			

Summary for Subcatchment 1A-II: DA #1A-II

Runoff = 69.47 cfs @ 11.96 hrs, Volume= 3.670 af, Depth= 4.35"

	Area ((ac) (CN E	Desc	cription		
	0.0	000	74 >	•75%	% Grass co	over, Good	, HSG C
	2.7	746	80 >	•75%	% Grass co	over, Good	, HSG D
	0.0	000	98 F	Pave	ed parking	, HSG C	
	6.	783			ed parking		
	0.0	000	96 0	Grav	el surface	, HSG C	
					el surface	,	
	0.5	587	77 V	Voo	ds, Good,	HSG D	
	10.1	116	92 V	Veig	ghted Aver	age	
	3.3	333	3	32.9	5% Pervio	us Area	
	6.	783	6	67.0	5% Imper\	∕ious Area	
	Tc	Length			Velocity	Capacity	Description
(I	min)	(feet)	(ft	/ft)	(ft/sec)	(cfs)	
	1.6	100	0.01	70	1.07		Sheet Flow,
							Smooth surfaces n= 0.011 P2= 2.20"
	0.9	140	0.01	70	2.65		Shallow Concentrated Flow,
							Paved Kv= 20.3 fps
	2.3	630			4.50		Direct Entry, Pipe Flow
	4.8	870	Tota	ıl, Ir	ncreased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 1A-III: DA #1A-III

Runoff = 38.53 cfs @ 11.96 hrs, Volume= 2.110 af, Depth= 4.69"

Area	(ac)	CN	Desc	cription		
0.	000	74 :	>75%	6 Grass co	over, Good,	HSG C
0.	883	80	>75%	6 Grass co	over, Good,	HSG D
0.	000	98	Pave	ed parking,	HSG C	
4.	519	98	Pave	ed parking,	HSG D	
0.	000	96	Grav	el surface	, HSG C	
0.	000	96	Grav	el surface	, HSG D	
5.	402	95	Weig	ghted Aver	age	
0.	883		16.3	5% Pervio	us Area	
4.	519		83.6	5% Imperv	vious Area	
Tc	Length	i Slo	ope	Velocity	Capacity	Description
(min)	(feet)) (f	t/ft)	(ft/sec)	(cfs)	
1.6	100	0.0	170	1.07		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.3	205	0.0	170	2.65		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
2.9	305	Tota	al, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 1A-IV: DA #1A-IV

Runoff = 46.36 cfs @ 11.96 hrs, Volume= 2.449 af, Depth= 4.35"

Area	(ac) C	N Des	cription		
0.	000	74 >75	% Grass c	over, Good	, HSG C
2.	082	80 >75	% Grass c	over, Good	, HSG D
0.	000		ed parking	,	
			ed parking		
			vel surface	,	
0.	000	96 Gra	vel surface	e, HSG D	
		92 We	ighted Ave	rage	
	082		34% Pervio		
4.	668	69.2	16% Imperv	∕ious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.6	100	0.0170	1.07		Sheet Flow,
0.7	110	0.0170	2.65		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps
2.4	360		2.50		Direct Entry,
4.7	570	Total,	Increased t	o minimum	i Tc = 6.0 min

Summary for Subcatchment 1A-V: DA #1A-V

Runoff = 37.53 cfs @ 11.96 hrs, Volume= 2.028 af, Depth= 4.57"

	Area ((ac)	CN [Desc	ription		
	0.0	000	74 >	>75%	6 Grass co	over, Good	, HSG C
	1.2	233				over, Good	, HSG D
	0.0	000			ed parking		
		088			ed parking		
		000			el surface		
	0.0	000	96 (Grav	el surface	, HSG D	
	5.3	321	94 \	Weig	ghted Aver	age	
		233		-	7% Pervio		
	4.0	088	7	76.83	3% Imperv	vious Area	
(1	Tc min)	Length (feet		ope t/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.6	100	0.01	170	1.07		Sheet Flow,
	1.4	225	5 0.01	170	2.65		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	1.3	200)		2.50		Direct Entry, Swale Flow
	4.3	525	5 Tota	al, Ir	ncreased t	o minimum	Tc = 6.0 min

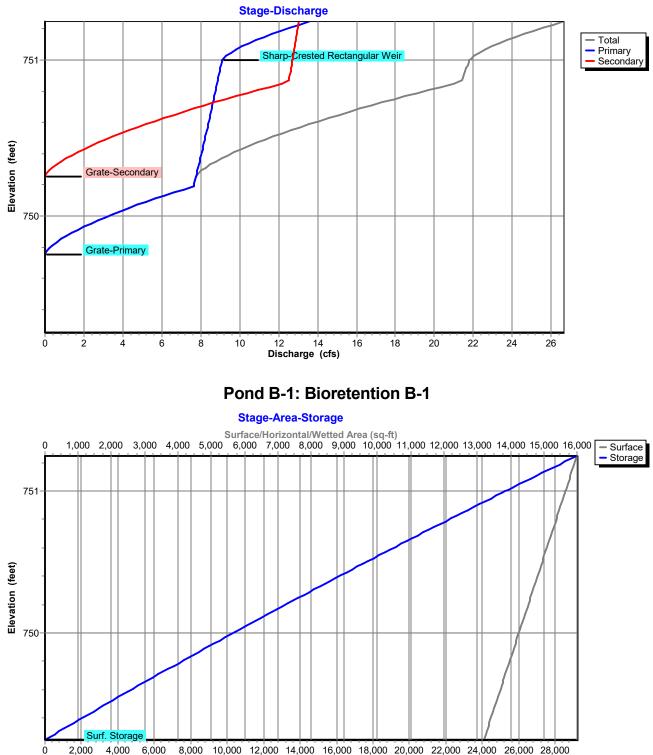
Summary for Subcatchment 1A-VI: DA #1A-V

Runoff = 18.14 cfs @ 11.96 hrs, Volume= 0.980 af, Depth= 4.57"

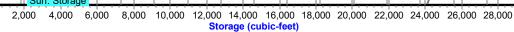
Area ((ac) C	N Des	cription		
0.0	000	74 >75	% Grass co	over, Good	, HSG C
0.8	542 8			over, Good	, HSG D
0.0			ed parking		
			ed parking		
			/el surface	,	
0.0	000	96 Grav	/el surface	, HSG D	
2.5	572 9	94 Wei	ghted Aver	age	
	542	-	7% Pervio		
2.0	030	78.9	3% Imper	∕ious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.5	100	0.0200	1.14		Sheet Flow,
2.0	350	0.0200	2.87		Smooth surfaces n= 0.011 P2= 2.20" Shallow Concentrated Flow, Paved Kv= 20.3 fps
1.3	200		2.50		Direct Entry, Swale Flow
4.8	650	Total, I	ncreased t	o minimum	n Tc = 6.0 min

Summary for Pond B-1: Bioretention B-1

Inflow A Inflow Outflow Primary Seconda	= 38.5 = 20.7 = 7.8 ary = 12.9	3 cfs @ 1 5 cfs @ 1 5 cfs @ 1 1 cfs @ 1	65% Impervious, Inflow Depth = 4.69" for 100-yr event 1.96 hrs, Volume= 2.110 af 2.05 hrs, Volume= 1.954 af, Atten= 46%, Lag= 5.4 min 2.05 hrs, Volume= 1.495 af 2.06 hrs, Volume= 0.460 af						
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 751.15' @ 12.06 hrs Surf.Area= 15,856 sf Storage= 27,562 cf									
Plug-Flow detention time= 93.9 min calculated for 1.954 af (93% of inflow) Center-of-Mass det. time= 52.0 min(815.2 - 763.2)									
Volume	Invert	Avail.Sto	rage Storage Description						
#1	749.25'		00 cf Surf. Storage (Prismatic) Listed below (Recalc)						
		-)							
Elevatio	on Surf.	Area	Inc.Store Cum.Store						
(fee	et) (:	sq-ft)	(cubic-feet) (cubic-feet)						
749.2	25 13	3,200	0 0						
751.2	25 16	6,000	29,200 29,200						
Device	Routing	Invert	Outlet Devices						
#1	Primary	747.25'							
			L= 87.0' CPP, square edge headwall, Ke= 0.500						
			Inlet / Outlet Invert= 747.25' / 747.00' S= 0.0029 '/' Cc= 0.900						
	D · · ·	740 751	n= 0.012, Flow Area= 1.23 sf						
#2	Device 1	749.75'	24.0" x 24.0" Horiz. Grate-Primary C= 0.600						
#3	Primary	751.00'	Limited to weir flow at low heads 10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)						
#3 #4	Secondary	745.75'	15.0" Round Culvert-Secondary						
<i>n</i> -	Occorridary	140.10	L= 45.0' CPP, square edge headwall, Ke= 0.500						
			Inlet / Outlet Invert= 745.75' / 744.13' S= 0.0360 '/' Cc= 0.900						
			n= 0.012, Flow Area= 1.23 sf						
#5	Device 4	750.25'	24.0" x 24.0" Horiz. Grate-Secondary C= 0.600						
			Limited to weir flow at low heads						
			@ 12.05 hrs HW=751.14' TW=750.03' (Dynamic Tailwater)						
			ntrols 5.78 cfs @ 4.71 fps)						


2=Grate-Primary (Passes 5.78 cfs of 20.31 cfs potential flow)

-3=Sharp-Crested Rectangular Weir (Weir Controls 1.76 cfs @ 1.24 fps)


Secondary OutFlow Max=12.89 cfs @ 12.06 hrs HW=751.14' TW=0.00' (Dynamic Tailwater) -4=Culvert-Secondary (Inlet Controls 12.89 cfs @ 10.51 fps) -5=Grate-Secondary (Passes 12.89 cfs of 18.12 cfs potential flow)

Proposed Conditions I

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Pond B-1: Bioretention B-1

Proposed Conditions ITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 106

Stage-Discharge for Pond B-1: Bioretention B-1

			•	I			. .
Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
749.25	0.00	0.00	0.00	750.27	7.86	7.79	0.07
749.27	0.00	0.00	0.00	750.29	8.04	7.83	0.21
749.29	0.00	0.00	0.00	750.31	8.25	7.87	0.38
749.31	0.00	0.00	0.00	750.33	8.50	7.90	0.59
749.33	0.00	0.00	0.00	750.35	8.77	7.94	0.83
749.35	0.00	0.00	0.00	750.37	9.07	7.98	1.09
749.37	0.00	0.00	0.00	750.39	9.39	8.02	1.37
749.39	0.00	0.00	0.00	750.41	9.73	8.06	1.67
749.41	0.00	0.00	0.00	750.43	10.09	8.09	2.00
749.43	0.00	0.00	0.00	750.45	10.47	8.13	2.34
749.45	0.00	0.00	0.00	750.47	10.87	8.17	2.70
749.47	0.00	0.00	0.00	750.49	11.28	8.20	3.08
749.49	0.00	0.00	0.00	750.51	11.71	8.24	3.47
749.51	0.00	0.00	0.00	750.53	12.15	8.28	3.88
749.53	0.00	0.00	0.00	750.55	12.61	8.31	4.30
749.55	0.00	0.00	0.00	750.57	13.08	8.35	4.74
749.57	0.00	0.00	0.00	750.59	13.57	8.38	5.19
749.59	0.00	0.00	0.00	750.61	14.07	8.42	5.65
749.61	0.00	0.00	0.00	750.63	14.58	8.46	6.13
749.63	0.00	0.00	0.00	750.65	15.11	8.49	6.62
749.65	0.00	0.00	0.00	750.67	15.65	8.53	7.12
749.67	0.00	0.00	0.00	750.69	16.20	8.56	7.64
749.69	0.00	0.00	0.00	750.71	16.76	8.60	8.16
749.71	0.00	0.00	0.00	750.73	17.33	8.63	8.70
749.73	0.00	0.00	0.00	750.75	17.91	8.67	9.25
749.75	0.00	0.00	0.00	750.77	18.51	8.70	9.81
749.73	0.00	0.00	0.00	750.79	19.12	8.73	10.38
749.79	0.07	0.07	0.00	750.81	19.72	8.77	10.36
749.81	0.38	0.21	0.00	750.83	20.36	8.80	11.56
749.83	0.58	0.59	0.00	750.85	20.30	8.84	12.16
749.85	0.83	0.83	0.00	750.85	21.00	8.87	12.10
749.85	1.09	1.09	0.00	750.87	21.40	8.91	12.55
749.87	1.09	1.09	0.00	750.89	21.40	8.94	12.50
749.89	1.67	1.67	0.00	750.91	21.52	8.94 8.97	12.56
749.93	2.00 2.34	2.00 2.34	0.00	750.95 750.97	21.64 21.71	9.01	12.64
749.95	2.34		0.00			9.04	12.67
749.97		2.70	0.00	750.99	21.77	9.07	12.69
749.99	3.08	3.08	0.00	751.01	21.86	9.14	12.72
750.01	3.47	3.47	0.00	751.03	22.06	9.31	12.75
750.03	3.88	3.88	0.00	751.05	22.31	9.54	12.78
750.05	4.30	4.30	0.00	751.07	22.61	9.81	12.80
750.07	4.74	4.74	0.00	751.09	22.95	10.12	12.83
750.09	5.19	5.19	0.00	751.11	23.32	10.46	12.86
750.11	5.65	5.65	0.00	751.13	23.71	10.83	12.88
750.13	6.13	6.13	0.00	751.15	24.14	11.23	12.91
750.15	6.62	6.62	0.00	751.17	24.59	11.65	12.94
750.17	7.12	7.12	0.00	751.19	25.06	12.10	12.97
750.19	7.63	7.63	0.00	751.21	25.56	12.56	12.99
750.21	7.67	7.67	0.00	751.23	26.07	13.05	13.02
750.23	7.71	7.71	0.00	751.25	26.61	13.56	13.05
750.25	7.75	7.75	0.00				
				l			

Proposed Conditions ITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-1: Bioretention B-1

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
749.25	13,200	0	750.27	14,628	14,192
749.23	13,228	264	750.29	14,656	14,192
749.29	13,256	529	750.31	14,684	14,779
749.31	13,284	795	750.33	14,712	15,072
749.33	13,312	1,060	750.35	14,740	15,367
749.35	13,340	1,327	750.37	14,768	15,662
749.35	13,368	1,594	750.39	14,796	15,958
749.39	13,396	1,862	750.41	14,824	16,254
749.39	13,424	2,130	750.43	14,852	16,551
749.43	13,452	2,399	750.45	14,880	16,848
749.45	13,480	2,668	750.43	14,908	17,146
749.45	13,508	2,000	750.49	14,936	17,140
749.49	13,536	3,208	750.51	14,964	17,743
749.51	13,564	3,200	750.53	14,904	18,043
749.53	13,592	3,751	750.55	15,020	18,343
749.55	13,620	4,023	750.57	15,048	18,644
749.55	13,648	4,023	750.59	15,048	18,945
749.59	13,676	4,290	750.61	15,104	19,247
749.61	13,704	4,843	750.63	15,132	19,549
749.63	13,732	4,043 5,117	750.65	15,160	19,852
749.65	13,760	5,392	750.67	15,188	20,155
749.65	13,788	5,667	750.69	15,216	20,155
749.69	13,816	5,944	750.71	15,244	20,400
749.09 749.71	13,844	6,220	750.73	15,244	
749.73	13,872	6,497	750.75	15,300	21,069 21,375
749.75	13,900	6,775	750.77	15,328	21,681
749.75	13,928	7,053	750.79	15,356	21,988
749.79	13,956	7,332	750.81	15,384	22,296
749.81	13,984	7,612	750.83	15,412	22,290
749.83	14,012	7,891	750.85	15,440	22,005
749.85	14,040	8,172	750.87	15,468	23,221
749.87	14,068	8,453	750.89	15,496	23,531
749.89	14,000	8,735	750.91	15,524	23,841
749.91	14,124	9,017	750.93	15,552	24,152
749.93	14,152	9,300	750.95	15,580	24,463
749.95	14,180	9,583	750.97	15,608	24,775
749.97	14,208	9,867	750.99	15,636	25,087
749.99	14,236	10,151	751.01	15,664	25,400
750.01	14,264	10,436	751.03	15,692	25,714
750.03	14,292	10,722	751.05	15,720	26,028
750.05	14,320	11,008	751.07	15,748	26,343
750.07	14,348	11,295	751.09	15,776	26,658
750.09	14,376	11,582	751.11	15,804	26,974
750.11	14,404	11,870	751.13	15,832	27,290
750.13	14,432	12,158	751.15	15,860	27,607
750.15	14,460	12,447	751.17	15,888	27,924
750.17	14,488	12,736	751.19	15,916	28,243
750.19	14,516	13,027	751.21	15,944	28,561
750.21	14,544	13,317	751.23	15,972	28,880
750.23	14,572	13,608	751.25	16,000	29,200
750.25	14,600	13,900		,	

Inflow Area = 6.750 ac, 69.16% Impervious, Inflow Depth = 4.35" for 100-vr event Inflow = 46.36 cfs @ 11.96 hrs, Volume= 2.449 af Outflow = 20.36 cfs @ 12.07 hrs, Volume= 2.255 af, Atten= 56%, Lag= 6.6 min Primary = 11.98 cfs @ 12.07 hrs, Volume= 1.839 af Secondary = 8.37 cfs @ 12.08 hrs, Volume= 0.416 af Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 751.40' @ 12.08 hrs Surf.Area= 29,249 sf Storage= 42,034 cf Plug-Flow detention time= 113.7 min calculated for 2.255 af (92% of inflow) Center-of-Mass det. time= 70.0 min (847.7 - 777.7) Volume Invert Avail.Storage Storage Description #1 749.50' 45,000 cf Surf. Storage (Prismatic) Listed below (Recalc) Elevation Cum.Store Surf.Area Inc.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 15.000 749.50 0 0 751.50 30,000 45,000 45,000 Device Routing Invert **Outlet Devices** 747.50' #1 Primarv 12.0" Round Culvert-Primarv L= 105.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 747.50' / 747.25' S= 0.0024 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf #2 24.0" x 24.0" Horiz. Grate-Primary C= 0.600 Device 1 750.00' Limited to weir flow at low heads #3 Secondary 746.00' 12.0" Round Culvert-Secondary L= 130.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 746.00' / 738.10' S= 0.0608 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf #4 Device 3 750.75' **24.0" x 24.0" Horiz. Grate-Secondary** C= 0.600 Limited to weir flow at low heads #5 Primary 751.00' **10.0' long Sharp-Crested Rectangular Weir** 2 End Contraction(s) Primary OutFlow Max=11.55 cfs @ 12.07 hrs HW=751.39' TW=750.03' (Dynamic Tailwater)

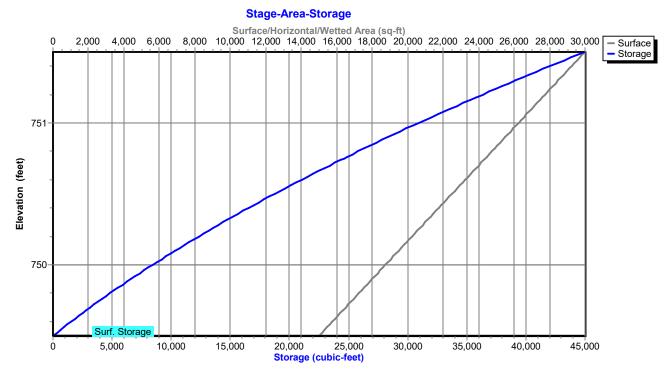
-**1=Culvert-Primary** (Outlet Controls 3.55 cfs @ 4.51 fps) **—2=Grate-Primary** (Passes 3.55 cfs of 22.49 cfs potential flow)

-5=Sharp-Crested Rectangular Weir (Weir Controls 8.00 cfs @ 2.05 fps)

Secondary OutFlow Max=8.37 cfs @ 12.08 hrs HW=751.39' TW=0.00' (Dynamic Tailwater) 3=Culvert-Secondary (Inlet Controls 8.37 cfs @ 10.65 fps)

4=Grate-Secondary (Passes 8.37 cfs of 13.50 cfs potential flow)

Proposed Conditions - I


Proposed Conditions I

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge Total Primary Secondary Sharp-Crested Rectangular Weir 751 Grate-Secondary Elevation (feet) Grate-Primary 750 2 4 6 8 10 12 16 18 20 22 24 Ò 14 Discharge (cfs)

Pond B-2: Bioretention B-2

Pond B-2: Bioretention B-2

Proposed Conditions ITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 110

Stage-Discharge for Pond B-2: Bioretention B-2

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
749.50	0.00	0.00	0.00	750.52	4.57	4.57	0.00
749.52	0.00	0.00	0.00	750.54	4.59	4.59	0.00
749.54	0.00	0.00	0.00	750.56	4.61	4.61	0.00
749.56	0.00	0.00	0.00	750.58	4.63	4.63	0.00
749.58	0.00	0.00	0.00	750.60	4.65	4.65	0.00
749.60	0.00	0.00	0.00	750.62	4.67	4.67	0.00
749.62	0.00	0.00	0.00	750.64	4.69	4.69	0.00
749.64	0.00	0.00	0.00	750.66	4.71	4.71	0.00
749.66	0.00	0.00	0.00	750.68	4.73	4.73	0.00
749.68	0.00	0.00	0.00	750.70	4.75	4.75	0.00
749.70	0.00	0.00	0.00	750.72	4.77	4.77	0.00
749.72	0.00	0.00	0.00	750.74	4.79	4.79	0.00
749.74	0.00	0.00	0.00	750.76	4.84	4.81	0.03
749.76	0.00	0.00	0.00	750.78	4.97	4.83	0.14
749.78	0.00	0.00	0.00	750.80	5.14	4.85	0.29
749.80	0.00	0.00	0.00	750.82	5.35	4.87	0.48
749.82	0.00	0.00	0.00	750.84	5.59	4.89	0.71
749.84	0.00	0.00	0.00	750.86	5.86	4.91	0.95
749.86	0.00	0.00	0.00	750.88	6.15	4.92	1.23
749.88	0.00	0.00	0.00	750.90	6.46	4.94	1.52
749.90	0.00	0.00	0.00	750.92	6.79	4.96	1.83
749.92	0.00	0.00	0.00	750.94	7.15	4.98	2.17
749.94	0.00	0.00	0.00	750.96	7.52	5.00	2.52
749.96	0.00	0.00	0.00	750.98	7.90	5.02	2.89
749.98	0.00	0.00	0.00	751.00	8.31	5.04	3.27
750.00 750.02	0.00 0.07	0.00 0.07	0.00 0.00	751.02 751.04	8.82 9.42	5.15 5.33	3.67 4.09
750.02	0.07	0.07	0.00	751.04	9.42 10.08	5.57	4.09
750.04	0.21	0.21	0.00	751.08	10.81	5.85	4.52
750.00	0.59	0.50	0.00	751.00	11.57	6.16	5.42
750.00	0.83	0.83	0.00	751.10	12.39	6.50	5.89
750.12	1.09	1.09	0.00	751.12	13.24	6.87	6.37
750.14	1.37	1.37	0.00	751.16	14.13	7.27	6.87
750.16	1.67	1.67	0.00	751.18	15.06	7.69	7.38
750.18	2.00	2.00	0.00	751.20	16.02	8.13	7.90
750.20	2.34	2.34	0.00	751.22	16.81	8.59	8.22
750.22	2.70	2.70	0.00	751.24	17.31	9.08	8.23
750.24	3.08	3.08	0.00	751.26	17.83	9.58	8.25
750.26	3.47	3.47	0.00	751.28	18.37	10.10	8.27
750.28	3.88	3.88	0.00	751.30	18.93	10.64	8.29
750.30	4.30	4.30	0.00	751.32	19.50	11.20	8.30
750.32	4.37	4.37	0.00	751.34	20.10	11.78	8.32
750.34	4.39	4.39	0.00	751.36	20.70	12.37	8.34
750.36	4.41	4.41	0.00	751.38	21.33	12.97	8.35
750.38	4.43	4.43	0.00	751.40	21.97	13.60	8.37
750.40	4.45	4.45	0.00	751.42	22.62	14.23	8.39
750.42	4.47	4.47	0.00	751.44	23.29	14.88	8.41
750.44	4.49	4.49	0.00	751.46	23.97	15.55	8.42
750.46	4.51	4.51	0.00	751.48	24.67	16.23	8.44
750.48	4.53	4.53	0.00	751.50	25.38	16.92	8.46
750.50	4.55	4.55	0.00				
				l			

Proposed Conditions ITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

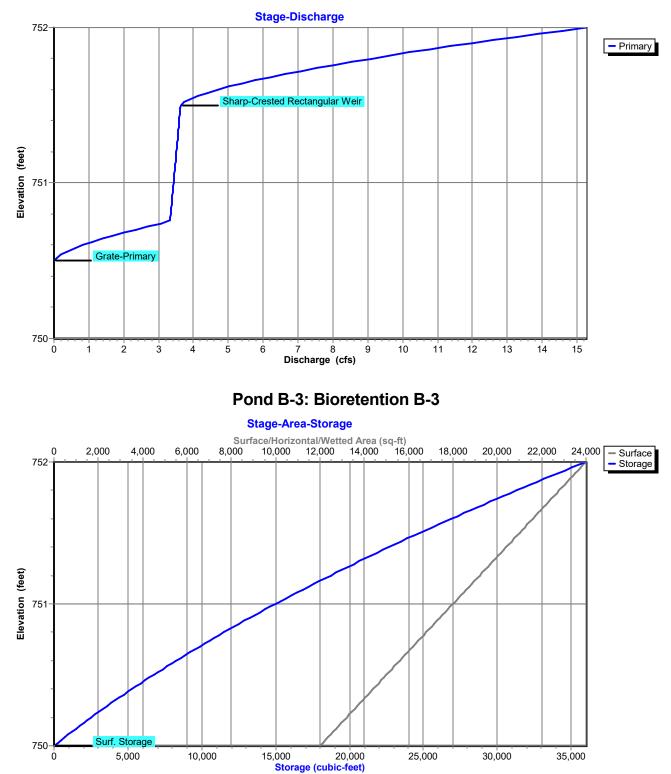
Proposed Conditions - I Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 111

Stage-Area-Storage for Pond B-2: Bioretention B-2

			I		•
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
749.50	15,000	0	750.52	22,650	19,201
749.52	15,150	301	750.54	22,800	19,656
749.54	15,300	606	750.56	22,950	20,113
749.56	15,450	913	750.58	23,100	20,574
749.58	15,600	1,224	750.60	23,250	21,038
749.60	15,750	1,538	750.62	23,400	21,504
749.62	15,900	1,854	750.64	23,550	21,973
749.64	16,050	2,173	750.66	23,700	22,446
749.66	16,200	2,496	750.68	23,850	22,921
749.68	16,350	2,821	750.70	24,000	23,400
749.70	16,500	3,150	750.72	24,150	23,882
749.72	16,650	3,482	750.74	24,300	24,366
749.72	16,800	3,816	750.76	24,450	24,853
749.76	16,950	4,153	750.78		
				24,600	25,344
749.78	17,100	4,494	750.80	24,750	25,837
749.80	17,250	4,837	750.82	24,900	26,334
749.82	17,400	5,184	750.84	25,050	26,834
749.84	17,550	5,534	750.86	25,200	27,336
749.86	17,700	5,886	750.88	25,350	27,841
749.88	17,850	6,241	750.90	25,500	28,350
749.90	18,000	6,600	750.92	25,650	28,861
749.92	18,150	6,961	750.94	25,800	29,376
749.94	18,300	7,326	750.96	25,950	29,894
749.96	18,450	7,694	750.98	26,100	30,414
749.98	18,600	8,064	751.00	26,250	30,938
750.00	18,750	8,438	751.02	26,400	31,464
750.02	18,900	8,814	751.04	26,550	31,993
750.04	19,050	9,193	751.06	26,700	32,526
750.06	19,200	9,576	751.08	26,850	33,062
750.08	19,350	9,962	751.10	27,000	33,600
750.10	19,500	10,350	751.12	27,150	34,142
750.12	19,650	10,742	751.14	27,300	34,686
750.14	19,800	11,136	751.16	27,450	35,233
750.16	19,950	11,533	751.18	27,600	35,784
750.18	20,100	11,934	751.20	27,750	36,338
750.20	20,250	12,338	751.22	27,900	36,894
750.22	20,400	12,744	751.24	28,050	37,454
750.24	20,550	13,154	751.26	28,200	38,016
750.26	20,700	13,566	751.28	28,350	38,581
750.28	20,850	13,981	751.30	28,500	39,150
750.30	21,000	14,400	751.32	28,650	39,722
750.32	21,150	14,822	751.34	28,800	40,296
750.34	21,300	15,246	751.36	28,950	40,874
750.36	21,450	15,674	751.38	29,100	41,454
750.38	21,600	16,104	751.40	29,250	42,037
750.40	21,750	16,537	751.42	29,400	42,624
750.42	21,900	16,974	751.44	29,550	43,214
750.44	22,050	17,414	751.46	29,700	43,806
750.46	22,200	17,856	751.48	29,850	44,402
750.48	22,350	18,302	751.50	30,000	45,000
750.50	22,500	18,750		,	,
	-,	-,			

Summary for Pond B-3: Bioretention B-3

Proposed Conditions - I


Printed 9/29/2022

Page 112

Inflow = 37.53 cfs @ Outflow = 14.49 cfs @	76.83% Impervious, Inflow Depth = 4.57" for 100-yr event 11.96 hrs, Volume= 2.028 af 12.09 hrs, Volume= 1.873 af, Atten= 61%, Lag= 7.6 min 12.09 hrs, Volume= 1.873 af								
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 751.98' @ 12.09 hrs Surf.Area= 23,865 sf Storage= 35,461 cf									
Plug-Flow detention time= 116.1 min calculated for 1.873 af (92% of inflow) Center-of-Mass det. time= 73.3 min (841.7 - 768.5)									
	.Storage Storage Description								
#1 750.00' 3	36,000 cf Surf. Storage (Prismatic) Listed below (Recalc)								
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)								
750.00 12,000	0 0								
752.00 24,000	36,000 36,000								
102.00 21,000	00,000								
Device Routing In	vert Outlet Devices								
#1 Primary 746	50' 8.0" Round Culvert-Primary								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L= 30.0' CPP, square edge headwall, Ke= 0.500								
	Inlet / Outlet Invert= 746.50' / 746.00' S= 0.0167 '/' Cc= 0.900								
	n= 0.012, Flow Area= 0.35 sf								
#2 Device 1 750									
	Limited to weir flow at low heads								
#3 Primary 751	50' 10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)								
	Primary OutFlow Max=14.34 cfs @ 12.09 hrs HW=751.97' TW=0.00' (Dynamic Tailwater)								

2=Grate-Primary (Barrel Controls 3.80 cfs @ 10.90 fps) **2=Grate-Primary** (Passes 3.80 cfs of 23.38 cfs potential flow) **-3=Sharp-Crested Rectangular Weir** (Weir Controls 10.54 cfs @ 2.25 fps)

Proposed Conditions I

Pond B-3: Bioretention B-3

Proposed Conditions IType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - I Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 114

Stage-Discharge for Pond B-3: Bioretention B-3

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
		750.51		751.02	3.44	751.53	
750.00	0.00 0.00	750.51	0.03 0.07	751.02	3.44 3.44	751.53	3.81 3.91
750.01				751.03			
750.02 750.03	0.00 0.00	750.53 750.54	0.14 0.21		3.45	751.55	4.01
				751.05	3.45	751.56	4.13
750.04	0.00	750.55	0.29	751.06	3.46	751.57	4.26
750.05	0.00	750.56	0.38	751.07	3.46	751.58	4.40
750.06	0.00	750.57	0.48	751.08	3.46	751.59	4.55
750.07	0.00	750.58	0.59	751.09	3.47	751.60	4.70
750.08	0.00	750.59	0.71	751.10	3.47	751.61	4.86
750.09	0.00	750.60	0.83	751.11	3.48	751.62	5.03
750.10	0.00	750.61	0.95	751.12	3.48	751.63	5.21
750.11	0.00	750.62	1.09	751.13	3.48	751.64	5.39
750.12	0.00	750.63	1.23	751.14	3.49	751.65	5.58
750.13	0.00	750.64	1.37	751.15	3.49	751.66	5.78
750.14	0.00	750.65	1.52	751.16	3.50	751.67	5.98
750.15	0.00	750.66	1.67	751.17	3.50	751.68	6.19
750.16	0.00	750.67	1.83	751.18	3.50	751.69	6.40
750.17	0.00	750.68	2.00	751.19	3.51	751.70	6.62
750.18	0.00	750.69	2.17	751.20	3.51	751.71	6.84
750.19	0.00	750.70	2.34	751.21	3.52	751.72	7.07
750.20	0.00	750.71	2.52	751.22	3.52	751.73	7.31
750.21	0.00	750.72	2.70	751.23	3.52	751.74	7.55
750.22	0.00	750.73	2.89	751.24	3.53	751.75	7.79
750.23	0.00	750.74	3.08	751.25	3.53	751.76	8.04
750.24	0.00	750.75	3.27	751.26	3.54	751.77	8.29
750.25	0.00	750.76	3.33	751.27	3.54	751.78	8.55
750.26	0.00	750.77	3.33	751.28	3.54	751.79	8.81
750.27	0.00	750.78	3.34	751.29	3.55	751.80	9.08
750.28	0.00	750.79	3.34	751.30	3.55	751.81	9.35
750.29	0.00	750.80	3.35	751.31	3.56	751.82	9.63
750.30	0.00	750.81	3.35	751.32	3.56	751.83	9.91
750.31	0.00	750.82	3.36	751.33	3.56	751.84	10.19
750.32	0.00	750.83	3.36	751.34	3.57	751.85	10.48
750.33	0.00	750.84	3.36	751.35	3.57	751.86	10.78
750.34	0.00	750.85	3.37	751.36	3.58	751.87	11.07
750.35	0.00	750.86	3.37	751.37	3.58	751.88	11.37
750.36	0.00	750.87	3.38	751.38	3.58	751.89	11.68
750.37	0.00	750.88	3.38	751.39	3.59	751.90	11.98
750.38	0.00	750.89	3.39	751.40	3.59	751.91	12.30
750.39	0.00	750.90	3.39	751.41	3.60	751.92	12.61
750.40	0.00	750.91	3.39	751.42	3.60	751.93	12.93
750.41	0.00	750.92	3.40	751.43	3.60	751.94	13.25
750.42	0.00	750.93	3.40	751.44	3.61	751.95	13.58
750.43	0.00	750.94	3.41	751.45	3.61	751.96	13.91
750.44	0.00	750.95	3.41	751.46	3.62	751.97	14.24
750.45	0.00	750.96	3.41	751.47	3.62	751.98	14.58
750.46	0.00	750.97	3.42	751.48	3.62	751.99	14.92
750.47	0.00	750.98	3.42	751.49	3.63	752.00	15.26
750.48	0.00	750.99	3.43	751.50	3.63		
750.49	0.00	751.00	3.43	751.51	3.67		
750.50	0.00	751.01	3.43	751.52	3.73		
		l		l			

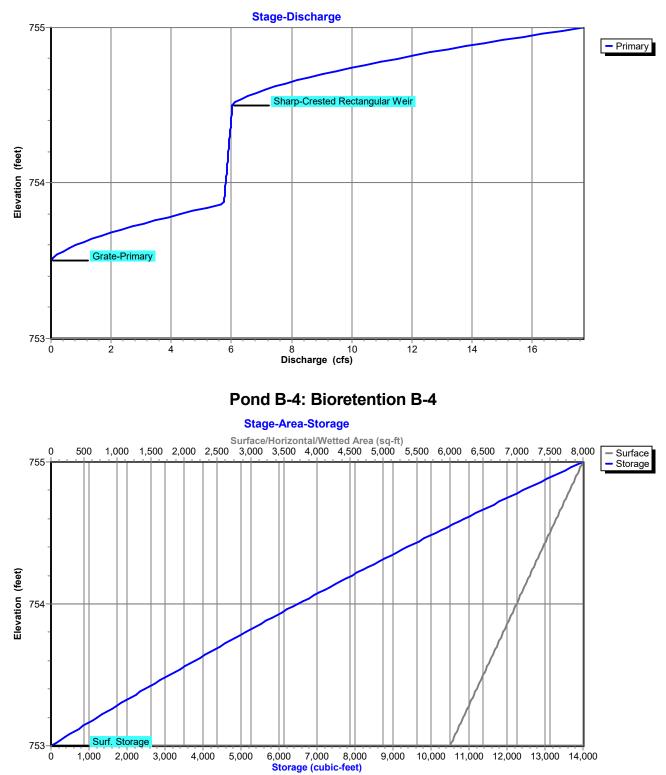
Proposed Conditions ITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-3: Bioretention B-3

		•	I		
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
750.00	12,000	0	751.02	18,120	15,361
750.02	12,120	241	751.04	18,240	15,725
750.04	12,240	485	751.06	18,360	16,091
750.06	12,360	731	751.08	18,480	16,459
750.08	12,480	979	751.10	18,600	16,830
750.10	12,600	1,230	751.12	18,720	17,203
750.12	12,720	1,483	751.14	18,840	17,579
750.14	12,840	1,739	751.16	18,960	17,957
750.16	12,960	1,997	751.18	19,080	18,337
750.18	13,080	2,257	751.20	19,200	18,720
750.20	13,200	2,520	751.22	19,320	19,105
750.22	13,320	2,320	751.22	19,440	19,493
750.24	13,440	3,053	751.26	19,560	19,883
750.26	13,560	3,323	751.28	19,680	20,275
750.28	13,680	3,595	751.30	19,800	20,670
750.30	13,800	3,870	751.32	19,920	21,067
750.32	13,920	4,147	751.34	20,040	21,467
750.34	14,040	4,427	751.36	20,160	21,869
750.36	14,160	4,709	751.38	20,280	22,273
750.38	14,280	4,993	751.40	20,400	22,680
750.40	14,400	5,280	751.42	20,520	23,089
750.42	14,520	5,569	751.44	20,640	23,501
750.44	14,640	5,861	751.46	20,760	23,915
750.46	14,760	6,155	751.48	20,880	24,331
750.48	14,880	6,451	751.50	21,000	24,750
750.50	15,000	6,750	751.52	21,120	25,171
750.52	15,120	7,051	751.54	21,240	25,595
750.54	15,240	7,355	751.56	21,360	26,021
750.56	15,360	7,661	751.58	21,480	26,449
750.58	15,480	7,969	751.60	21,600	26,880
750.60	15,600	8,280	751.62	21,720	27,313
750.62	15,720	8,593	751.64	21,840	27,749
750.64	15,840	8,909	751.66	21,960	28,187
750.66	15,960	9,227	751.68	22,080	28,627
750.68	16,080	9,547	751.70	22,200	29,070
750.70	16,200	9,870	751.72	22,320	29,515
750.72	16,320	10,195	751.74	22,440	29,963
750.74	16,440	10,523	751.76	22,560	30,413
750.76	16,560	10,853	751.78	22,680	30,865
750.78	16,680	11,185	751.80	22,800	31,320
750.80	16,800	11,520	751.82	22,920	31,777
750.82	16,920	11,857	751.84	23,040	32,237
750.84	17,040	12,197	751.86	23,160	32,699
750.86	17,160	12,539	751.88	23,280	33,163
750.88	17,100	12,883	751.90	23,200	33,630
750.90	17,400	13,230	751.90	23,520	34,099
					,
750.92	17,520	13,579	751.94	23,640	34,571
750.94	17,640	13,931	751.96	23,760	35,045
750.96	17,760	14,285	751.98	23,880	35,521
750.98	17,880	14,641	752.00	24,000	36,000
751.00	18,000	15,000			
			I		

Summary for Pond B-4: Bioretention B-4

Proposed Conditions - I


Printed 9/29/2022

Page 116

Inflow = 18.14 cfs @ Outflow = 10.00 cfs @	8.93% Impervious, Inflow Depth = 4.57" for 100-yr event 11.96 hrs, Volume= 0.980 af 12.06 hrs, Volume= 0.909 af, Atten= 45%, Lag= 5.9 min 12.06 hrs, Volume= 0.909 af								
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 754.74' @ 12.06 hrs Surf.Area= 7,743 sf Storage= 11,978 cf									
Plug-Flow detention time= 83.7 min calculated for 0.909 af (93% of inflow) Center-of-Mass det. time= 42.3 min (810.8 - 768.5)									
	orage Storage Description								
#1 753.00' 14,0	000 cf Surf. Storage (Prismatic) Listed below (Recalc)								
Elevation Surf.Area (feet) (sq-ft)	Inc.Store Cum.Store (cubic-feet) (cubic-feet)								
753.00 6,000	0 0								
755.00 8,000	14,000 14,000								
Device Routing Invert	Outlet Devices								
#1 Primary 749.50	12.0" Round Culvert-Primary L= 230.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 749.50' / 746.50' S= 0.0130 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf								
#2 Device 1 753.50	24.0" x 24.0" Horiz. Grate-Primary C= 0.600								
#3 Primary 754.50	Limited to weir flow at low heads 10.0' Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)								
	Primary OutFlow Max=9.70 cfs @ 12.06 hrs HW=754.73' TW=0.00' (Dynamic Tailwater) 1=Culvert-Primary (Barrel Controls 6.13 cfs @ 7.80 fps)								

1-2=Grate-Primary (Passes 6.13 cfs of 21.36 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Weir Controls 3.58 cfs @ 1.57 fps)

Proposed Conditions I Prepared by Pinewoods Engineering, P.C.

Pond B-4: Bioretention B-4

Proposed Conditions ITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond B-4: Bioretention B-4

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
753.00	0.00	753.51	0.03	754.02	5.82	754.53	6.21
753.01	0.00	753.52	0.07	754.03	5.82	754.54	6.31
753.02	0.00	753.53	0.14	754.04	5.83	754.55	6.41
753.03	0.00	753.54	0.21	754.05	5.83	754.56	6.53
753.04	0.00	753.55	0.29	754.06	5.84	754.57	6.66
753.05	0.00	753.56	0.38	754.07	5.84	754.58	6.80
753.06	0.00	753.57	0.48	754.08	5.84	754.59	6.95
753.07	0.00	753.58	0.59	754.09	5.85	754.60	7.10
753.08	0.00	753.59	0.71	754.10	5.85	754.61	7.27
753.09	0.00	753.60	0.83	754.11	5.86	754.62	7.44
753.10	0.00	753.61	0.95	754.12	5.86	754.63	7.61
753.11	0.00	753.62	1.09	754.13	5.87	754.64	7.80
753.12	0.00	753.63	1.23	754.14	5.87	754.65	7.99
753.13	0.00	753.64	1.37	754.15	5.88	754.66	8.18
753.14	0.00	753.65	1.52	754.16	5.88	754.67	8.38
753.15	0.00	753.66	1.67	754.17	5.88	754.68	8.59
753.16	0.00	753.67	1.83	754.18	5.89	754.69	8.81
753.17	0.00	753.68	2.00	754.19	5.89	754.70	9.03
753.18	0.00	753.69	2.17	754.20	5.90	754.71	9.25
753.19	0.00	753.70	2.34	754.21	5.90	754.72	9.48
753.20	0.00	753.71	2.52	754.22	5.91	754.73	9.72
753.21	0.00	753.72	2.70	754.23	5.91	754.74	9.96
753.22	0.00	753.73	2.89	754.24	5.91	754.75	10.20
753.23	0.00	753.74	3.08	754.25	5.92	754.76	10.45
753.24	0.00	753.75	3.27	754.26	5.92	754.77	10.71
753.25	0.00	753.76	3.47	754.27	5.93	754.78	10.96
753.26	0.00	753.77	3.67	754.28	5.93	754.79	11.23
753.27	0.00	753.78	3.88	754.29	5.94	754.80	11.50
753.28	0.00	753.79	4.09	754.30	5.94	754.81	11.77
753.29	0.00	753.80	4.30	754.31	5.95	754.82	12.05
753.30	0.00	753.81	4.52	754.32	5.95	754.83	12.33
753.31	0.00	753.82	4.74	754.33	5.95	754.84	12.61
753.32	0.00	753.83	4.96	754.34	5.96	754.85	12.90
753.33	0.00	753.84	5.19	754.35	5.96	754.86	13.19
753.34	0.00	753.85	5.42	754.36	5.97	754.87	13.49
753.35	0.00	753.86	5.65	754.37	5.97	754.88	13.79
753.36	0.00	753.87	5.75	754.38	5.98	754.89	14.10
753.37	0.00	753.88	5.75	754.39	5.98	754.90	14.40
753.38	0.00	753.89	5.76	754.40	5.98	754.91	14.72
753.39	0.00	753.90	5.76	754.41	5.99	754.92	15.03
753.40	0.00	753.91	5.77	754.42	5.99	754.93	15.35
753.41	0.00	753.92	5.77	754.43	6.00	754.94	15.67
753.42	0.00	753.93	5.78	754.44	6.00	754.95	16.00
753.43	0.00	753.94	5.78	754.45	6.01	754.96	16.33
753.44	0.00	753.95	5.79	754.46	6.01	754.97	16.66
753.45	0.00	753.96	5.79	754.47	6.01	754.98	17.00
753.46	0.00	753.97	5.80	754.48	6.02	754.99	17.34
753.47	0.00	753.98	5.80	754.49	6.02	755.00	17.68
753.48	0.00	753.99	5.80	754.50	6.03		
753.49	0.00	754.00	5.81	754.51	6.06		
753.50	0.00	754.01	5.81	754.52	6.13		
		l					

Proposed Conditions ITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-4: Bioretention B-4

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
753.00	6,000	0	754.02	7,020	6,640
753.02	6,020	120	754.04	7,040	6,781
753.04	6,040	241	754.06	7,060	6,922
753.06	6,060	362	754.08	7,080	7,063
753.08	6,080	483	754.10	7,100	7,205
753.10	6,100	605	754.12	7,120	7,347
753.12	6,120	727	754.14	7,140	7,490
753.14	6,140	850	754.16	7,160	7,633
753.16	6,160	973	754.18	7,180	7,776
753.18	6,180	1,096	754.20	7,200	7,920
753.20	6,200	1,220	754.22	7,220	8,064
753.22	6,220	1,344	754.24	7,240	8,209
753.24	6,240	1,469	754.26	7,260	8,354
753.26	6,260	1,594	754.28	7,280	8,499
753.28	6,280	1,719	754.30	7,300	8,645
753.30	6,300	1,845	754.32	7,320	8,791
753.32	6,320	1,971	754.34	7,340	8,938
753.34	6,340	2,098	754.36	7,360	9,085
753.36	6,360	2,225	754.38	7,380	9,232
753.38	6,380	2,352	754.40	7,400	9,380
753.40	6,400	2,480	754.42	7,420	9,528
753.42	6,420	2,608	754.44	7,440	9,677
753.44	6,440	2,737	754.46	7,460	9,826
753.46	6,460	2,866	754.48	7,480	9,975
753.48 753.50	6,480 6,500	2,995	754.50 754.52	7,500 7,520	10,125
753.50	6,520	3,125 3,255	754.52	7,520	10,275 10,426
753.54	6,540	3,386	754.56	7,560	10,420
753.56	6,560	3,517	754.58	7,580	10,728
753.58	6,580	3,648	754.60	7,600	10,880
753.60	6,600	3,780	754.62	7,620	11,032
753.62	6,620	3,912	754.64	7,640	11,185
753.64	6,640	4,045	754.66	7,660	11,338
753.66	6,660	4,178	754.68	7,680	11,491
753.68	6,680	4,311	754.70	7,700	11,645
753.70	6,700	4,445	754.72	7,720	11,799
753.72	6,720	4,579	754.74	7,740	11,954
753.74	6,740	4,714	754.76	7,760	12,109
753.76	6,760	4,849	754.78	7,780	12,264
753.78	6,780	4,984	754.80	7,800	12,420
753.80	6,800	5,120	754.82	7,820	12,576
753.82	6,820	5,256	754.84	7,840	12,733
753.84	6,840	5,393	754.86	7,860	12,890
753.86	6,860	5,530	754.88	7,880	13,047
753.88	6,880	5,667	754.90	7,900	13,205
753.90	6,900	5,805	754.92	7,920	13,363
753.92	6,920	5,943	754.94	7,940	13,522
753.94	6,940	6,082	754.96	7,960	13,681
753.96	6,960 6,980	6,221	754.98	7,980	13,840 14 000
753.98 754.00	6,980 7,000	6,360 6,500	755.00	8,000	14,000
104.00	7,000	0,000			
			I		

Summary for Pond P-1: Wet Pond P-1

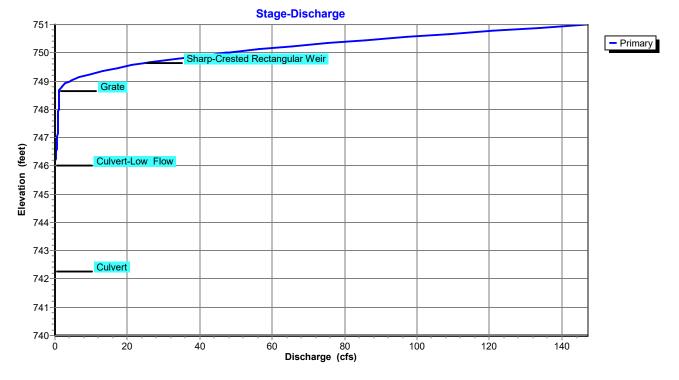
Inflow Area =	22.268 ac, 71.72% Impervious, Inflow I	Depth = 3.77" for 100-yr event
Inflow =	82.61 cfs @ 11.98 hrs, Volume=	7.004 af
Outflow =	50.42 cfs @ 12.07 hrs, Volume=	6.995 af, Atten= 39%, Lag= 5.9 min
Primary =	50.42 cfs @ 12.07 hrs, Volume=	6.995 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 750.04' @ 12.07 hrs Surf.Area= 50,663 sf Storage= 92,210 cf

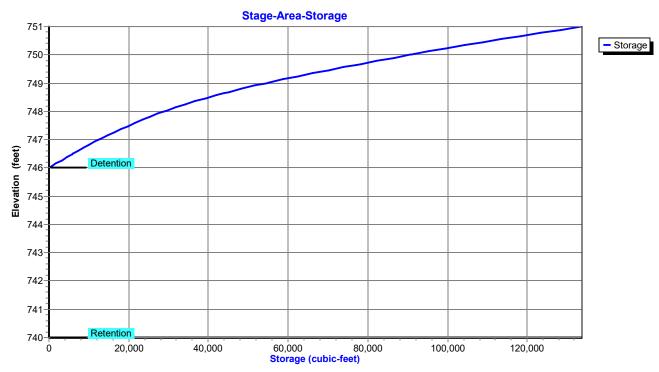
Plug-Flow detention time= 213.6 min calculated for 6.995 af (100% of inflow) Center-of-Mass det. time= 212.5 min (1,028.8 - 816.4)

Volume	Invei	rt Avai	I.Storage	Storage Descripti	on		
#1	740.00)'	0 cf		llar) Listed below	(Recalc)	
#2	746.00	י 1	33,484 cf	24,499 cf Overall	x 0.0% Voids Ilar) Listed below	(Recalc)	
	140.00		33,484 cf	Total Available St			
			00,404 01		olugo		
Elevatio	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
740.0		651	103.0	0	0	651	
741.5		2,244	1,016.0	2,052	2,052	81,955	
745.0		4,383	391.0	11,390	13,442	151,977	
746.5	0	10,839	632.0	11,057	24,499	171,611	
Elevatio	n S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
746.0		11,459	563.0	0	0	11,459	
747.0		13,760	587.0	12,592	12,592	13,729	
748.0	0	19,120	930.0	16,367	28,959	55,143	
749.0	0	32,528	1,810.0	25,529	54,488	247,025	
750.0	0	39,522	1,836.0	35,968	90,456	254,786	
751.0	0	46,632	1,863.0	43,028	133,484	262,946	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	742	.25' 30.0	" Round Culvert			
	,,			35.0' CPP, square	edge headwall. k	(e= 0.500	
						= 0.0019 '/' Cc= 0.900	
			n= (0.012, Flow Area=	4.91 sf		
#2	Device 1	748	.65' 30.0)" W x 30.0" H 9° G	Grate C= 0.600		
		_		ted to weir flow at I			
#3	Primary					Neir 2 End Contraction(s	s)
#4	Device 1	746		Round Culvert-L		1/ 0.000	
				5.0' CPP, project			
				0.012, Flow Area=		= -0.0333 '/' Cc= 0.900	
			- U		0.20 31		

Primary OutFlow Max=49.44 cfs @ 12.07 hrs HW=750.03' TW=0.00' (Dynamic Tailwater)


1=Culvert (Passes 34.17 cfs of 60.40 cfs potential flow)

2=Grate (Orifice Controls 32.72 cfs @ 5.23 fps)


4=Culvert-Low Flow (Inlet Controls 1.45 cfs @ 7.39 fps)

-3=Sharp-Crested Rectangular Weir (Weir Controls 15.27 cfs @ 2.02 fps)

Pond P-1: Wet Pond P-1

Proposed Conditions I

Pond P-1: Wet Pond P-1

Proposed Conditions ITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond P-1: Wet Pond P-1

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
740.00	0.00	743.06	0.00	746.12	0.03	749.18	7.99
740.06	0.00	743.12	0.00	746.18	0.07	749.24	9.69
740.12	0.00	743.18	0.00	746.24	0.12	749.30	11.54
740.18	0.00	743.24	0.00	746.30	0.18	749.36	13.52
740.24	0.00	743.30	0.00	746.36	0.24	749.42	15.63
740.30	0.00	743.36	0.00	746.42	0.31	749.48	17.85
740.36	0.00	743.42	0.00	746.48	0.36	749.54	20.19
740.42	0.00	743.48	0.00	746.54	0.40	749.60	22.63
740.48	0.00	743.54	0.00	746.60	0.44	749.66	25.23
740.54	0.00	743.60	0.00	746.66	0.48	749.72	29.02
740.60	0.00	743.66	0.00	746.72	0.51	749.78	33.50
740.66	0.00	743.72	0.00	746.78	0.54	749.84	36.78
740.72	0.00	743.78	0.00	746.84	0.57	749.90	40.44
740.78	0.00	743.84	0.00	746.90	0.60	749.96	44.42
740.84	0.00	743.90	0.00	746.96	0.63	750.02	48.69
740.90	0.00	743.96	0.00	747.02	0.65	750.08	53.22
740.96	0.00	744.02	0.00	747.08	0.68	750.14	58.00
741.02	0.00	744.08	0.00	747.14	0.70	750.20	63.01
741.08	0.00	744.14	0.00	747.20	0.73	750.26	68.22
741.14	0.00	744.20	0.00	747.26	0.75	750.32	73.65
741.20	0.00	744.26	0.00	747.32	0.77	750.38	79.26
741.26	0.00	744.32	0.00	747.38	0.79	750.44	85.06
741.32	0.00	744.38	0.00	747.44	0.81	750.50	91.04
741.38	0.00	744.44	0.00	747.50	0.83	750.56	97.19
741.44	0.00	744.50	0.00	747.56	0.85	750.62	103.50
741.50	0.00	744.56	0.00	747.62	0.87	750.68	109.97
741.56	0.00	744.62	0.00	747.68	0.89	750.74	116.60
741.62	0.00	744.68	0.00	747.74	0.91	750.80	123.37
741.68	0.00	744.74	0.00	747.80	0.93	750.86	130.29
741.74	0.00	744.80	0.00	747.86	0.95	750.92	137.35
741.80	0.00	744.86	0.00	747.92	0.96	750.98	144.55
741.86	0.00	744.92	0.00	747.98	0.98		
741.92	0.00	744.98	0.00	748.04	1.00		
741.98	0.00	745.04	0.00	748.10	1.02		
742.04	0.00	745.10	0.00	748.16	1.03		
742.10	0.00	745.16	0.00	748.22	1.05		
742.16	0.00	745.22	0.00	748.28	1.06		
742.22	0.00	745.28	0.00	748.34	1.08		
742.28	0.00	745.34	0.00	748.40	1.09		
742.34	0.00	745.40	0.00	748.46	1.11		
742.40	0.00	745.46	0.00	748.52	1.12		
742.46	0.00	745.52	0.00	748.58	1.14		
742.52	0.00	745.58	0.00	748.64	1.15		
742.58	0.00	745.64	0.00	748.70	1.27		
742.64	0.00	745.70	0.00	748.76	1.54		
742.70	0.00	745.76	0.00	748.82	1.95		
742.76	0.00	745.82	0.00	748.88	2.51		
742.82	0.00	745.88	0.00	748.94	3.21		
742.88	0.00	745.94	0.00	749.00	4.07		
742.94	0.00	746.00	0.00	749.06	5.12		
743.00	0.00	746.06	0.01	749.12	6.46		
		I					

Proposed Conditions ITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond P-1: Wet Pond P-1

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
740.00	0	747.65	22,616
740.15	0	747.80	25,249
740.30	0	747.95	28,010
740.45	0	748.10	30,929
740.60	0	748.25	34,112
740.75	0	748.40	37,575
740.90	0	748.55	41,333
741.05	0	748.70	45,396
741.20	0	748.85	49,777
741.35	0	749.00	54,488
741.50	0	749.15	59,442
741.65	0	749.30	64,548
741.80	0	749.45	69,809
741.95	0	749.60	75,227
742.10	0	749.75	80,803
742.25	0	749.90	86,540
742.40	0	750.05	92,440
742.55	0	750.20	98,497
742.70	0	750.35	104,710
742.85	0	750.50	111,081
743.00	0	750.65	117,612
743.15	Ō	750.80	124,305
743.30	0	750.95	131,161
743.45	Ő		,
743.60	Ō		
743.75	0		
743.90	Ō		
744.05	0		
744.20	Ő		
744.35	0		
744.50	Ő		
744.65	0		
744.80	Ő		
744.95	Ő		
745.10	0		
745.25	Ő		
745.40	0 0		
745.55	Ő		
745.70	0 0		
745.85	Ő		
746.00	Ő		
746.15	1,744		
746.30	3,537		
746.45	5,382		
746.60	7,278		
746.75	9,227		
746.90	11,228		
747.05	13,286		
747.20	15,444		
747.35	17,716		
747.50	20,105		
	_0,.00		
		•	

Summary for Link 1AT: DA #1A Total

 Inflow Area =
 56.205 ac, 63.22% Impervious, Inflow Depth =
 4.14" for 100-yr event

 Inflow =
 158.96 cfs @
 12.17 hrs, Volume=
 19.402 af

 Primary =
 158.96 cfs @
 12.17 hrs, Volume=
 19.402 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-1: DP #1 - Rush Crk Trib.

Inflow Are	ea =	56.205 ac, 63.22% Impervious, Inflow Depth = 4.14" for 100-yr event
Inflow	=	158.96 cfs @ 12.17 hrs, Volume= 19.402 af
Primary	=	158.96 cfs $\overline{@}$ 12.17 hrs, Volume= 19.402 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP #2 - Smokes Crk

 Inflow Area =
 83.814 ac, 88.53% Impervious, Inflow Depth > 4.79" for 100-yr event

 Inflow =
 335.55 cfs @ 12.03 hrs, Volume=
 33.468 af

 Primary =
 335.55 cfs @ 12.03 hrs, Volume=
 33.468 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

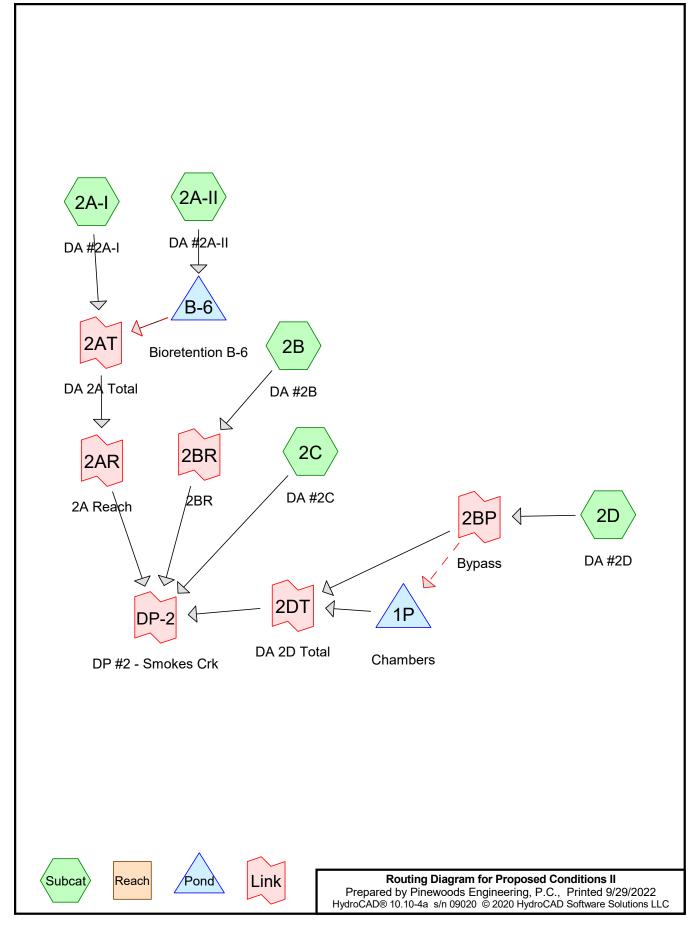
100-yr Primary Outflow Imported from Proposed Conditions II~Link DP-2.hce

Summary for Link DP-3: DP #3 - Rush Crk

 Inflow Area =
 55.981 ac, 45.79% Impervious, Inflow Depth > 3.90" for 100-yr event

 Inflow =
 123.65 cfs @ 12.33 hrs, Volume=
 18.201 af

 Primary =
 123.65 cfs @ 12.33 hrs, Volume=
 18.201 af, Atten= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

100-yr Primary Outflow Imported from Proposed Conditions III~Link DP-3.hce

Summary for Link PT: Proposed Conditions Total Offsite

Inflow Are	ea =	196.000 ac, 69.06% Impervious, Inflow Depth > 4.35" for 100-yr event
Inflow	=	541.90 cfs @ 12.16 hrs, Volume= 71.071 af
Primary	=	541.90 cfs @ 12.16 hrs, Volume= 71.071 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 2A-I: DA #2A-I

Runoff = 60.68 cfs @ 12.12 hrs, Volume= 4.736 af, Depth= 1.42"

Area	(ac) (CN Des	cription		
0.	.883	74 >75	% Grass c	over, Good	, HSG C
3.	754	80 >75	% Grass c	over, Good	, HSG D
5.	.748	98 Pav	ed parking	, HSG C	
29.	.010	98 Pav	ed parking	, HSG D	
0.	.000		vel surface		
			vel surface	,	
0.	.000	77 Woo	ods, Good,	HSG D	
			ghted Avei		
	.269	-	6% Pervio		
34.	.758	86.8	4% Imper	∕ious Area	
_					
Tc	Length	•	Velocity	Capacity	Description
(min)	(feet)		(ft/sec)	(cfs)	
1.9	98	0.0100	0.86		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.20"
13.7	65	0.0150	0.08		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.20"
0.8	80	0.0100	1.61		Shallow Concentrated Flow,
0.4	000	0.0450	0.40		Unpaved Kv= 16.1 fps
2.1	320	0.0150	2.49		Shallow Concentrated Flow,
4 7	140		1 50		Paved Kv= 20.3 fps
1.7	446		4.50		Direct Entry, Pipe Flow
20.2	1,009	Total			

Summary for Subcatchment 2A-II: DA #2A-II

Runoff = 6.84 cfs @ 11.96 hrs, Volume= 0.353 af, Depth= 1.42"

Area	(ac)	CN I	Desc	ription		
0.	000	74 :	>75%	6 Grass co	over, Good,	HSG C
0.	400	80 3	>75%	6 Grass co	over, Good,	, HSG D
0.	000			ed parking,		
2.	580			ed parking,		
0.	000	96	Grav	el surface	, HSG C	
0.	000			el surface	,	
0.	000	77 \	Woo	ds, Good,	HSG D	
2.	980	96	Weig	ghted Aver	age	
0.	400		13.42	2% Pervio	us Area	
2.	580	8	86.58	8% Imperv	vious Area	
Тс	Length		ope	Velocity	Capacity	Description
<u>(min)</u>	(feet) (f	t/ft)	(ft/sec)	(cfs)	
1.6	100	0.01	150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
3.0	450	0.01	150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
4.6	550) Tota	al, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 2B: DA #2B

Runoff = 29.40 cfs @ 11.96 hrs, Volume= 1.599 af, Depth= 1.62"

Area	(ac)	CN D	escription		
0	.000	74 >7	75% Grass o	over, Good	, HSG C
0	.000	80 >7	75% Grass o	over, Good	, HSG D
2	.682	98 Pa	aved parking	, HSG C	
9	.190		aved parking		
0	.000	96 G	ravel surface	e, HSG C	
0	.000	96 G	ravel surface	e, HSG D	
0	.000	77 W	oods, Good	, HSG D	
11	.872	98 W	eighted Ave	rage	
11	.872	1(00.00% Impe	ervious Area	3
Tc	Length	•			Description
(min)	(feet)) (ft/i	t) (ft/sec)	(cfs)	
1.9	100	0.010	0.86		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.20"
1.6	200	0.010	0 2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
3.5	300	Total	, Increased	to minimum	1 Tc = 6.0 min

Summary for Subcatchment 2C: DA #2C

Runoff	=	20.20 cfs @	11.97 hrs,	Volume=	0.984 af,	Depth= 1.02"
--------	---	-------------	------------	---------	-----------	--------------

Area	(ac)	CN	Desc	cription		
0.	913	74	>75%	% Grass co	over, Good	, HSG C
2.	316	80	>75%	% Grass co	over, Good	, HSG D
1.	729	98	Pave	ed parking	HSG C	
5.	964	98		ed parking		
0.	000	96	Grav	el surface	, HSG C	
0.	000	96		el surface	,	
0.	595	77	Woo	ds, Good,	HSG D	
11.	517	91	Weig	ghted Aver	age	
3.	824		33.2	0% Pervio	us Area	
7.	693		66.8	0% Imperv	vious Area	
Тс	Length		lope	Velocity	Capacity	Description
(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	
1.9	100	0.0	0100	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.6	200	0.0	0100	2.03		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
3.5	300) То	tal, li	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 2D: DA #2D

Runoff = 43.13 cfs @ 11.96 hrs, Volume= 2.345 af, Depth= 1.62"

Area	(ac)	CN	Desc	cription		
0.	.000	74	>75%	6 Grass co	over, Good,	HSG C
0.	.118	80	>75%	6 Grass co	over, Good,	HSG D
10.	.554	98		ed parking		
6.	.746	98		ed parking		
0.	.000	96	Grav	el surface	, HSG C	
0.	.000	96		el surface		
0.	.000	77	Woo	ds, Good,	HSG D	
17.	.418	98	Weig	ghted Aver	age	
0.	.118		0.68	% Perviou	s Ārea	
17.	.300		99.3	2% Imperv	∕ious Area	
Тс	Lengt	h	Slope	Velocity	Capacity	Description
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
1.9	9	8 0	.0100	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.7	44	6		4.50		Direct Entry, Pipe Flow
3.6	54	4 T	otal, Ir	ncreased t	o minimum	Tc = 6.0 min
			,			

Inflow	=	0.00 cfs @	1.00 hrs, Volume=	0.000 af
Outflow	=	0.00 cfs @	1.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min
Primary	=	0.00 cfs @	1.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 748.00' @ 1.00 hrs Surf.Area= 5,210 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avail.Storage	Storage Description
#1A	748.00'	5,151 cf	58.50'W x 89.06'L x 3.75'H Field A
			19,537 cf Overall - 6,658 cf Embedded = 12,878 cf x 40.0% Voids
#2A	748.75'	6,658 cf	ADS_StormTech DC-780 +Cap x 144 Inside #1
			Effective Size= 45.4"W x 30.0"H => 6.49 sf x 7.12'L = 46.2 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			144 Chambers in 12 Rows
		11,810 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	748.00'	36.0" Round Culvert L= 165.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 748.00' / 747.35' S= 0.0039 '/' Cc= 0.900 n= 0.012, Flow Area= 7.07 sf

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=748.00' TW=0.00' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.00 cfs)

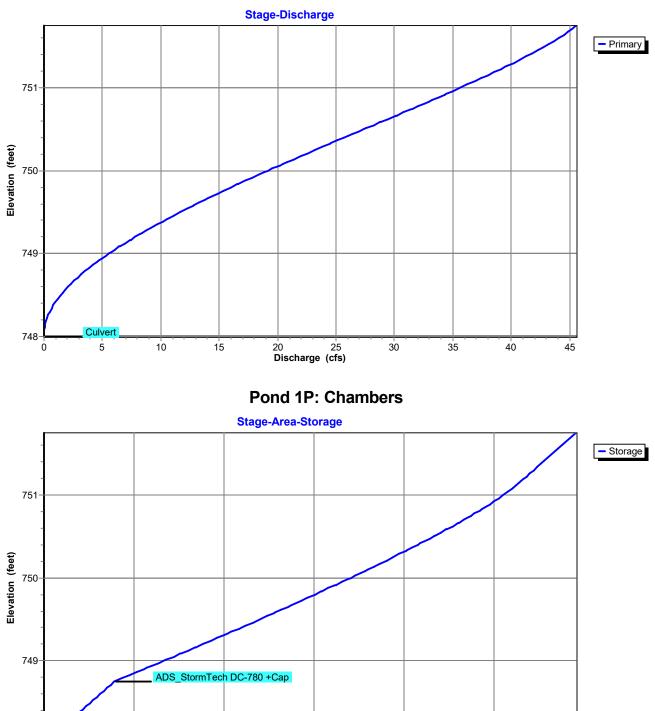
Proposed Conditions II Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Field A

2,000

4,000

6,000


Storage (cubic-feet)

8,000

10,000

748

Ó

Pond 1P: Chambers

Proposed Conditions IIType II 24Prepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 1P: Chambers

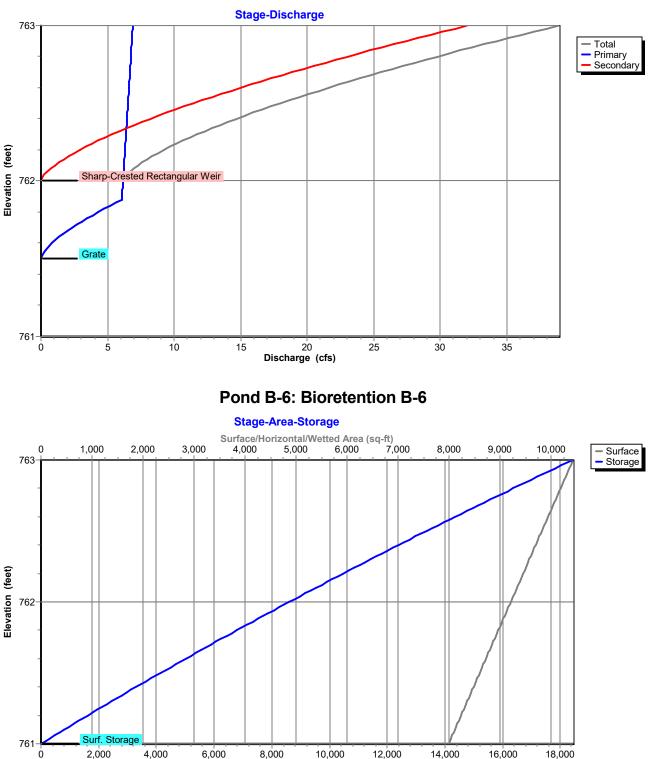
	Duine and	L	Duine and		Duine and		Duine em e
Elevation (feet)	Primary	Elevation (feet)	Primary	Elevation (feet)	Primary	Elevation (feet)	Primary
748.00	(cfs) 0.00	749.02	(cfs) 5.77	750.04	(cfs) 19.80	751.06	<u>(cfs)</u> 36.60
748.00	0.00	749.02	5.99	750.04	20.12	751.08	36.91
748.02	0.00	749.04	6.20	750.08	20.12	751.08	37.22
748.04	0.01	749.08	6.42	750.08	20.44	751.10	37.53
748.08	0.02	749.00	6.65	750.10	20.70	751.12	37.84
748.08	0.05	749.10	6.87	750.12	21.09	751.14	38.14
748.10	0.03	749.12	7.10	750.14	21.41	751.18	38.45
748.12	0.07	749.14	7.10	750.18	21.74 22.07	751.18	38.75
748.16	0.10	749.10	7.57	750.18	22.40	751.20	39.05
748.18	0.13	749.10	7.81	750.20	22.40	751.22	39.34
748.20	0.17	749.20	8.05	750.22	23.05	751.24	39.63
748.20	0.22	749.22	8.29	750.24	23.39	751.28	39.03
748.22	0.20	749.24	8.53	750.28	23.39	751.20	40.21
748.24	0.32	749.20	8.78	750.28	23.72	751.30	40.21
748.28	0.37	749.28	9.03	750.30	24.05	751.32	40.50
748.30	0.44	749.30	9.03	750.32	24.30	751.34	40.78
748.30	0.50	749.32	9.29	750.34	24.71	751.38	41.00
748.32 748.34	0.58	749.34	9.54 9.80	750.38	25.05	751.38	41.55
748.36	0.03	749.38	10.06	750.30	25.71	751.40	41.87
748.38	0.74	749.30	10.00	750.40	26.05	751.42	42.13
748.40	0.02	749.40	10.55	750.42	26.38	751.44	42.13
748.40	1.01	749.42	10.86	750.44	26.72	751.48	42.39
748.44	1.01	749.44	11.13	750.48	27.05	751.40	42.00
748.46	1.11	749.48	11.13	750.40	27.03	751.50	42.90
748.48	1.32	749.40	11.68	750.50	27.39	751.52	43.38
748.50	1.44	749.52	11.95	750.52	28.06	751.54	43.62
748.52	1.55	749.52	12.23	750.54	28.39	751.58	43.85
748.54	1.68	749.56	12.51	750.58	28.73	751.60	44.07
748.56	1.80	749.58	12.80	750.60	29.06	751.62	44.29
748.58	1.93	749.60	13.08	750.62	29.40	751.64	44.50
748.60	2.07	749.62	13.37	750.64	29.73	751.66	44.71
748.62	2.21	749.64	13.66	750.66	30.07	751.68	44.91
748.64	2.35	749.66	13.95	750.68	30.40	751.70	45.10
748.66	2.50	749.68	14.24	750.70	30.74	751.72	45.28
748.68	2.65	749.70	14.54	750.72	31.07	751.74	45.45
748.70	2.80	749.72	14.84	750.74	31.40	-	
748.72	2.96	749.74	15.13	750.76	31.73		
748.74	3.12	749.76	15.43	750.78	32.06		
748.76	3.29	749.78	15.74	750.80	32.40		
748.78	3.46	749.80	16.04	750.82	32.73		
748.80	3.63	749.82	16.35	750.84	33.05		
748.82	3.81	749.84	16.65	750.86	33.38		
748.84	3.99	749.86	16.96	750.88	33.71		
748.86	4.18	749.88	17.27	750.90	34.04		
748.88	4.36	749.90	17.58	750.92	34.36		
748.90	4.56	749.92	17.89	750.94	34.68		
748.92	4.75	749.94	18.21	750.96	35.01		
748.94	4.95	749.96	18.52	750.98	35.33		
748.96	5.15	749.98	18.84	751.00	35.65		
748.98	5.35	750.00	19.16	751.02	35.97		
749.00	5.56	750.02	19.48	751.04	36.28		
		I		l	l	l	

Proposed Conditions IIType II 24-hPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - II Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 10

Stage-Area-Storage for Pond 1P: Chambers

Elevation Storage (cubic-feet) Elevation Storage (feet) 748.00 0 750.55 8,820 748.10 208 750.665 9,154 748.10 208 750.70 9,317 748.20 417 750.75 9,476 748.25 521 750.86 9,631 748.30 625 750.90 9,927 748.40 834 750.90 9,927 748.40 834 750.90 9,927 748.40 834 750.90 9,927 748.40 834 750.90 9,927 748.45 938 751.00 10,198 748.55 1,146 751.10 10,440 748.65 1,355 751.20 10,662 748.75 1,563 751.35 10,976 748.80 1,783 751.35 10,976 748.80 1,783 751.45 11,185 749.90 2,876 751.65 11,393 </th <th></th> <th></th> <th></th> <th></th>				
748.00 0 750.55 8,820 748.05 104 750.60 8,989 748.10 208 750.65 9,154 748.15 313 750.70 9,317 748.20 417 750.75 9,476 748.25 521 750.80 9,631 748.30 625 750.85 9,782 748.35 729 750.90 9,927 748.40 834 750.91 9,0327 748.40 834 750.95 10,067 748.45 938 751.00 10,198 748.55 1,042 751.05 10,322 748.55 1,46 751.15 10,552 748.65 1,355 751.20 10,662 748.70 1,459 751.25 10,768 748.85 2,003 751.40 11,080 748.85 2,003 751.40 11,080 748.85 2,441 751.50 11,289 749.	Elevation			
748.05 104 750.60 8,989 748.10 208 750.65 9,154 748.15 313 750.70 9,317 748.20 417 750.75 9,476 748.25 521 750.80 9,631 748.30 625 750.85 9,782 748.40 834 750.95 10,067 748.45 938 751.00 10,198 748.45 938 751.00 10,422 748.55 1,146 751.15 10,552 748.65 1,355 751.20 10,662 748.65 1,355 751.20 10,662 748.65 1,355 751.20 10,662 748.65 1,355 751.30 10,872 748.80 1,783 751.35 10,976 748.85 2,003 751.40 11,080 748.85 2,003 751.40 11,080 748.90 2,223 751.55 11,393 749.00 2,659 751.55 11,393 749.05 2,8	(feet)	(cubic-feet)	(feet)	(cubic-feet)
748.10 208 750.65 9,154 748.15 313 750.70 9,317 748.20 417 750.75 9,476 748.25 521 750.80 9,631 748.30 625 750.85 9,782 748.35 729 750.90 9,927 748.40 834 750.95 10,067 748.45 938 751.00 10,198 748.55 1,146 751.10 10,440 748.65 1,355 751.20 10,662 748.70 1,459 751.25 10,768 748.75 1,563 751.30 10,872 748.80 1,783 751.30 10,872 748.80 1,783 751.35 10,976 748.80 1,783 751.30 10,872 748.80 1,783 751.55 11,393 749.00 2,659 751.55 11,393 749.00 2,659 751.65 11,601 749.10 3,092 751.65 11,601 749.30 3		0	750.55	8,820
748.15 313 750.70 $9,317$ 748.20 417 750.75 $9,476$ 748.25 521 750.80 $9,631$ 748.30 625 750.85 $9,782$ 748.35 729 750.90 $9,927$ 748.40 834 750.95 $10,067$ 748.45 938 751.00 $10,198$ 748.50 $1,042$ 751.05 $10,322$ 748.55 $1,146$ 751.10 $10,444$ 748.60 $1,250$ 751.15 $10,552$ 748.65 $1,355$ 751.20 $10,662$ 748.75 $1,563$ 751.30 $10,872$ 748.80 $1,783$ 751.35 $10,768$ 748.75 $1,563$ 751.30 $10,872$ 748.80 $1,783$ 751.35 $10,976$ 748.85 $2,003$ 751.40 $11,080$ 748.90 $2,223$ 751.45 $11,185$ 748.95 $2,441$ 751.50 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.05 $2,876$ 751.75 $11,810$ 749.30 $3,949$ 749.35 $4,161$ 749.30 $4,790$ 749.55 $4,997$ 749.65 $5,408$ 750.16 $7,937$ 749.95 $6,610$ 750.05 $6,998$ 750.15 $7,380$ $7,503$ 750.45 $8,475$ $7,53$ 750.45 $8,475$ $7,5$	748.05	104	750.60	8,989
748.20 417 750.75 9,476 748.25 521 750.80 9,631 748.30 625 750.85 9,782 748.35 729 750.90 9,927 748.40 834 750.95 10,067 748.45 938 751.00 10,198 748.55 1,146 751.15 10,322 748.60 1,250 751.15 10,652 748.65 1,355 751.20 10,662 748.65 1,355 751.20 10,662 748.65 1,355 751.25 10,768 748.65 1,353 751.35 10,872 748.80 1,783 751.35 10,872 748.80 1,783 751.35 10,976 748.85 2,003 751.40 11,080 748.85 2,003 751.45 11,185 748.85 2,003 751.55 11,393 749.00 2,659 751.55 11,393 749.00 2,659 751.65 11,601 749.10	748.10	208	750.65	9,154
748.25 521 750.80 $9,631$ 748.30 625 750.85 $9,782$ 748.40 834 750.95 $10,067$ 748.45 938 751.00 $10,198$ 748.50 $1,042$ 751.05 $10,322$ 748.55 $1,146$ 751.10 $10,440$ 748.60 $1,250$ 751.15 $10,552$ 748.65 $1,355$ 751.20 $10,662$ 748.70 $1,459$ 751.25 $10,768$ 748.75 $1,563$ 751.30 $10,872$ 748.80 $1,783$ 751.35 $10,976$ 748.85 $2,003$ 751.45 $11,180$ 748.90 $2,223$ 751.45 $11,180$ 748.95 $2,441$ 751.50 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.00 $2,659$ 751.75 $11,810$ 749.20 $3,522$ 751.75 $11,810$ 749.20 $3,522$ 751.75 $11,810$ 749.35 $4,161$ $4,790$ 749.45 $4,581$ 749.60 $5,204$ 749.75 $5,814$ 749.90 $6,413$ 749.95 $6,610$ 750.05 $6,998$ 750.16 $7,937$ 750.35 $8,119$ 750.45 $8,475$	748.15	313	750.70	9,317
748.30 625 750.85 $9,782$ 748.35 729 750.90 $9,927$ 748.40 834 750.95 $10,067$ 748.45 938 751.00 $10,198$ 748.50 $1,042$ 751.05 $10,322$ 748.55 $1,146$ 751.10 $10,440$ 748.60 $1,250$ 751.15 $10,552$ 748.65 $1,355$ 751.20 $10,662$ 748.75 $1,563$ 751.25 $10,768$ 748.75 $1,563$ 751.30 $10,872$ 748.80 $1,783$ 751.35 $10,976$ 748.80 $1,783$ 751.35 $10,976$ 748.80 $1,783$ 751.35 $10,976$ 748.85 $2,003$ 751.40 $11,080$ 748.90 $2,223$ 751.45 $11,185$ 748.95 $2,441$ 751.50 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.65 $11,601$ 749.10 $3,092$ 751.65 $11,601$ 749.20 $3,522$ 751.75 $11,810$ 749.30 $3,949$ 749.35 $4,161$ 749.45 $4,581$ $4,997$ 749.60 $5,204$ 749.90 $6,413$ 749.95 $6,610$ 750.05 $6,998$ 750.10 $7,937$ 750.35 $8,119$ 750.45 $8,475$	748.20	417	750.75	9,476
748.35 729 750.90 $9,927$ 748.40 834 750.95 $10,067$ 748.45 938 751.00 $10,198$ 748.50 $1,042$ 751.05 $10,322$ 748.55 $1,146$ 751.10 $10,440$ 748.60 $1,250$ 751.15 $10,552$ 748.65 $1,355$ 751.20 $10,662$ 748.75 $1,563$ 751.35 $10,976$ 748.80 $1,783$ 751.35 $10,976$ 748.80 $1,783$ 751.35 $10,976$ 748.80 $2,223$ 751.40 $11,080$ 748.90 $2,223$ 751.45 $11,185$ 748.90 $2,223$ 751.45 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.10 $3,092$ 751.65 $11,601$ 749.20 $3,522$ 751.75 $11,810$ 749.25 $3,736$ 751.75 $11,810$ 749.30 $3,949$ 749.35 $4,161$ 749.45 $4,581$ $4,997$ 749.65 $5,408$ 749.75 749.75 $5,814$ 749.90 $6,413$ 749.95 $6,610$ 750.05 $6,998$ 750.10 $7,190$ 750.25 $7,753$ 750.35 $8,119$ 750.45 $8,475$	748.25	521	750.80	9,631
748.40 834 750.95 10,067 748.45 938 751.00 10,198 748.50 1,042 751.05 10,322 748.55 1,146 751.10 10,440 748.65 1,355 751.20 10,662 748.70 1,459 751.25 10,768 748.75 1,563 751.30 10.872 748.80 1,783 751.35 10,976 748.85 2,003 751.40 11,080 748.85 2,003 751.45 11,185 748.90 2,223 751.45 11,185 749.00 2,659 751.55 11,393 749.00 2,659 751.55 11,393 749.05 2,876 751.60 11,497 749.10 3,092 751.65 11,601 749.20 3,522 751.75 11,810 749.30 3,949 749.35 4,161 749.40 4,371 749.45 4,581 749.50 4,790 6,413 749.90 749.65 </td <td>748.30</td> <td>625</td> <td>750.85</td> <td>9,782</td>	748.30	625	750.85	9,782
748.45 938 751.00 10,198 748.50 1,042 751.05 10,322 748.55 1,146 751.10 10,440 748.60 1,250 751.15 10,552 748.65 1,355 751.20 10,662 748.70 1,459 751.25 10,768 748.75 1,563 751.30 10,872 748.80 1,783 751.35 10,976 748.80 1,783 751.35 10,976 748.80 2,223 751.40 11,080 748.90 2,223 751.45 11,185 749.00 2,659 751.55 11,393 749.05 2,876 751.60 11,497 749.10 3,092 751.65 11,601 749.10 3,092 751.65 11,601 749.20 3,522 751.75 11,810 749.30 3,949 749.35 4,161 749.40 4,371 749.60 5,204 749.55 4,997 749.65 5,408 749.60	748.35	729	750.90	9,927
748.50 $1,042$ 751.05 $10,322$ 748.55 $1,146$ 751.10 $10,440$ 748.60 $1,250$ 751.15 $10,552$ 748.65 $1,355$ 751.20 $10,662$ 748.70 $1,459$ 751.25 $10,768$ 748.75 $1,563$ 751.30 $10,872$ 748.80 $1,783$ 751.35 $10,976$ 748.80 $1,783$ 751.35 $10,976$ 748.85 $2,003$ 751.40 $11,080$ 748.90 $2,223$ 751.45 $11,185$ 748.95 $2,441$ 751.50 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.10 $3,092$ 751.65 $11,601$ 749.20 $3,522$ 751.75 $11,810$ 749.20 $3,522$ 751.75 $11,810$ 749.25 $3,736$ 749.30 $3,949$ 749.35 $4,161$ 749.45 $4,581$ 749.65 $5,408$ 749.70 $5,612$ 749.85 $6,215$ 749.90 $6,413$ 749.90 $6,413$ 749.95 $6,610$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	748.40	834	750.95	10,067
748.551,146 751.10 10,440 748.60 1,250 751.15 10,552 748.65 1,355 751.20 10,662 748.70 1,459 751.25 10,768 748.75 1,563 751.30 10,872 748.80 1,783 751.35 10,976 748.85 2,003 751.40 11,080 748.90 2,223 751.45 11,185 748.95 2,441 751.50 11,289 749.00 2,659 751.55 11,393 749.05 2,876 751.60 11,497 749.10 3,092 751.65 11,601 749.20 3,522 751.75 11,810 749.20 3,522 751.75 11,810 749.30 3,949 749.35 4,161 749.45 4,581 749.45 4,581 749.55 4,997 749.60 5,204 749.75 5,814 749.75 $5,814$ 749.90 6,413 749.95 6,610 750.05 6,998 750.10 $7,190$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	748.45	938	751.00	10,198
748.601,250 751.15 10,552 748.65 1,355 751.20 10,662 748.70 1,459 751.25 10,768 748.75 1,563 751.30 10,872 748.80 1,783 751.35 10,976 748.85 2,003 751.40 11,080 748.90 2,223 751.45 11,185 748.95 2,441 751.50 11,289 749.00 2,659 751.55 11,393 749.05 2,876 751.60 11,497 749.10 3,092 751.65 11,601 749.20 3,522 751.75 11,810 749.25 3,736 749.30 3,949 749.35 4,161 749.40 4,371 749.40 4,371 749.60 5,204 749.55 4,997 749.65 5,408 749.75 5,814 749.80 6,015 749.85 6,610 750.00 6,805 750.20 $7,568$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$ $8,475$	748.50	1,042	751.05	
748.651,355 751.20 10,662 748.70 1,459 751.25 10,768 748.75 1,563 751.30 10,872 748.80 1,783 751.35 10,976 748.85 2,003 751.40 11,080 748.90 2,223 751.45 11,185 748.95 2,441 751.50 11,289 749.00 2,659 751.55 11,393 749.05 2,876 751.60 11,497 749.00 2,659 751.55 11,393 749.05 2,876 751.60 11,497 749.00 3,092 751.65 11,601 749.10 3,092 751.65 11,601 749.20 3,522 751.75 11,810 749.25 3,736 749.30 3,949 749.35 4,161 749.45 4,581 749.45 4,581 749.55 4,997 749.60 5,204 749.65 5,408 749.75 5,814 749.80 6,015 749.85 6,215 749.90 6,413 749.90 6,413 749.95 6,610 750.05 6,998 750.15 $7,380$ 750.20 $7,568$ $7,503$ $7,503$ 750.35 8,119 750.40 8,298 750.40 8,298 750.45 8,475	748.55	1,146	751.10	10,440
748.70 $1,459$ 751.25 $10,768$ 748.75 $1,563$ 751.30 $10,872$ 748.80 $1,783$ 751.35 $10,976$ 748.85 $2,003$ 751.40 $11,080$ 748.90 $2,223$ 751.45 $11,185$ 748.95 $2,441$ 751.50 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.05 $2,876$ 751.65 $11,601$ 749.10 $3,092$ 751.65 $11,601$ 749.15 $3,308$ 751.70 $11,706$ 749.20 $3,522$ 751.75 $11,810$ 749.20 $3,522$ 751.75 $11,810$ 749.20 $3,522$ 751.75 $11,810$ 749.35 $4,161$ 749.45 $4,581$ 749.30 $3,949$ $4,371$ 749.45 749.45 $4,581$ 749.95 $6,612$ 749.75 $5,814$ 749.90 $6,413$ 749.90 $6,413$ 749.95 $6,610$ 750.05 $6,998$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$ $8,475$	748.60	1,250	751.15	10,552
748.75 $1,563$ 751.30 $10,872$ 748.80 $1,783$ 751.35 $10,976$ 748.85 $2,003$ 751.40 $11,080$ 748.90 $2,223$ 751.45 $11,185$ 748.95 $2,441$ 751.50 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.10 $3,092$ 751.65 $11,601$ 749.15 $3,308$ 751.70 $11,706$ 749.20 $3,522$ 751.75 $11,810$ 749.25 $3,736$ 749.30 $3,949$ 749.35 $4,161$ 749.40 $4,371$ 749.40 $4,371$ 749.45 $4,581$ 749.55 $4,997$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.05 $6,998$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$ $8,475$	748.65	1,355	751.20	10,662
748.801,783 751.35 10,976 748.85 2,003 751.40 11,080 748.90 2,223 751.45 11,185 748.95 2,441 751.50 11,289 749.00 2,659 751.55 11,393 749.05 2,876 751.60 11,497 749.10 3,092 751.65 11,601 749.10 3,092 751.65 11,601 749.20 3,522 751.75 11,810 749.25 3,736 749.30 3,949 749.35 4,161 749.40 4,371 749.45 4,581 749.50 4,790 749.55 4,997 749.65 5,408 749.75 5,814 749.75 5,814 749.75 5,814 749.90 6,413 749.95 6,610 750.00 6,898 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$ $8,475$	748.70		751.25	10,768
748.852,003 751.40 $11,080$ 748.90 2,223 751.45 $11,185$ 748.95 2,441 751.50 $11,289$ 749.00 2,659 751.55 $11,393$ 749.05 2,876 751.60 $11,497$ 749.05 2,876 751.65 $11,601$ 749.10 3,092 751.65 $11,601$ 749.15 3,308 751.70 $11,706$ 749.20 3,522 751.75 $11,810$ 749.25 3,736 749.30 $3,949$ 749.35 4,161 749.45 4,581 749.45 4,581 749.50 4,790 749.55 4,997 749.60 5,204 749.65 5,408 749.70 5,612 749.75 5,814 749.80 6,015 749.85 6,215 749.90 6,413 749.95 6,610 750.05 6,998 750.15 $7,380$ 750.20 $7,568$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	748.75	1,563	751.30	10,872
748.90 $2,223$ 751.45 $11,185$ 748.95 $2,441$ 751.50 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.05 $2,876$ 751.65 $11,601$ 749.05 $2,876$ 751.65 $11,601$ 749.10 $3,092$ 751.65 $11,601$ 749.15 $3,308$ 751.70 $11,706$ 749.20 $3,522$ 751.75 $11,810$ 749.25 $3,736$ 749.35 $4,161$ 749.35 $4,161$ 749.45 $4,581$ 749.45 $4,581$ 749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.05 $6,998$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.30 $7,937$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	748.80	1,783	751.35	10,976
748.95 $2,441$ 751.50 $11,289$ 749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.05 $2,876$ 751.60 $11,497$ 749.10 $3,092$ 751.65 $11,601$ 749.15 $3,308$ 751.70 $11,706$ 749.20 $3,522$ 751.75 $11,810$ 749.25 $3,736$ 749.30 $3,949$ 749.35 $4,161$ 749.45 $4,581$ 749.45 $4,581$ 749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.05 $6,998$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$ $8,475$	748.85	2,003	751.40	11,080
749.00 $2,659$ 751.55 $11,393$ 749.05 $2,876$ 751.60 $11,497$ 749.10 $3,092$ 751.65 $11,601$ 749.15 $3,308$ 751.70 $11,706$ 749.20 $3,522$ 751.75 $11,810$ 749.25 $3,736$ 749.30 $3,949$ 749.35 $4,161$ 749.40 $4,371$ 749.45 $4,581$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.75 $5,814$ 749.85 $6,215$ 749.85 $6,215$ 749.85 $6,610$ 750.00 $6,805$ 750.05 $6,998$ 750.10 $7,190$ 750.15 $7,380$ 750.20 $7,568$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$ $8,475$	748.90	2,223	751.45	11,185
749.05 $2,876$ 751.60 $11,497$ 749.10 $3,092$ 751.65 $11,601$ 749.15 $3,308$ 751.70 $11,706$ 749.20 $3,522$ 751.75 $11,810$ 749.25 $3,736$ 790 749.35 $4,161$ 749.40 $4,371$ 749.45 $4,581$ 749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.75 $5,814$ 749.85 $6,215$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.05 $6,998$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	748.95	2,441	751.50	11,289
749.10 3,092 751.65 11,601 749.15 3,308 751.70 11,706 749.20 3,522 751.75 11,810 749.25 3,736 749.30 3,949 749.30 3,949 749.35 4,161 749.40 4,371 749.45 4,581 749.50 4,790 749.55 4,997 749.60 5,204 749.65 5,408 749.70 5,612 749.85 6,215 749.80 6,015 749.85 6,215 749.90 6,413 749.95 6,610 750.00 6,805 750.05 6,998 750.10 7,190 750.15 7,380 750.20 7,568 750.20 7,568 750.30 7,937 750.35 8,119 750.40 8,298 750.45 8,475	749.00	2,659	751.55	11,393
749.15 3,308 751.70 11,706 749.20 3,522 751.75 11,810 749.25 3,736 749.30 3,949 749.35 4,161 749.40 4,371 749.45 4,581 749.55 4,997 749.60 5,204 749.65 5,408 749.70 5,612 749.85 6,215 749.85 6,215 749.90 6,413 749.95 6,610 750.00 6,805 750.00 6,805 750.10 7,190 750.15 7,380 750.20 7,568 750.20 7,568 750.30 7,937 750.35 8,119 750.40 8,298 750.45 8,475 8,475	749.05	2,876	751.60	11,497
749.20 3,522 751.75 11,810 749.25 3,736	749.10	3,092	751.65	11,601
749.25 $3,736$ 749.30 $3,949$ 749.35 $4,161$ 749.40 $4,371$ 749.45 $4,581$ 749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.05 $6,998$ 750.10 $7,190$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	749.15	3,308	751.70	11,706
749.30 $3,949$ 749.35 $4,161$ 749.40 $4,371$ 749.45 $4,581$ 749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.05 $6,998$ 750.10 $7,190$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	749.20	3,522	751.75	11,810
749.35 $4,161$ 749.40 $4,371$ 749.45 $4,581$ 749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	749.25	3,736		
749.40 $4,371$ 749.45 $4,581$ 749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	749.30	3,949		
749.45 $4,581$ 749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$		4,161		
749.50 $4,790$ 749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	749.40	4,371		
749.55 $4,997$ 749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.30 $7,937$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	749.45	4,581		
749.60 $5,204$ 749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.30 $7,937$ 750.40 $8,298$ 750.45 $8,475$	749.50	4,790		
749.65 $5,408$ 749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	749.55	4,997		
749.70 $5,612$ 749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.10 $7,190$ 750.15 $7,380$ 750.25 $7,753$ 750.35 $8,119$ 750.40 $8,298$ 750.45 $8,475$	749.60			
749.75 $5,814$ 749.80 $6,015$ 749.85 $6,215$ 749.90 $6,413$ 749.95 $6,610$ 750.00 $6,805$ 750.05 $6,998$ 750.15 $7,380$ 750.20 $7,568$ 750.25 $7,753$ 750.35 $8,119$ 750.45 $8,475$				
749.806,015749.856,215749.906,413749.956,610750.006,805750.107,190750.157,380750.207,568750.307,937750.358,119750.408,298750.458,475	749.70	5,612		
749.85 6,215 749.90 6,413 749.95 6,610 750.00 6,805 750.10 7,190 750.15 7,380 750.20 7,568 750.35 8,119 750.40 8,298 750.45 8,475	749.75			
749.90 6,413 749.95 6,610 750.00 6,805 750.05 6,998 750.10 7,190 750.20 7,568 750.30 7,937 750.35 8,119 750.45 8,475				
749.95 6,610 750.00 6,805 750.10 7,190 750.15 7,380 750.20 7,568 750.30 7,937 750.35 8,119 750.45 8,475	749.85			
750.00 6,805 750.05 6,998 750.10 7,190 750.15 7,380 750.20 7,568 750.30 7,937 750.35 8,119 750.45 8,475				
750.056,998750.107,190750.157,380750.207,568750.257,753750.307,937750.358,119750.408,298750.458,475	749.95			
750.107,190750.157,380750.207,568750.257,753750.307,937750.358,119750.408,298750.458,475				
750.15 7,380 750.20 7,568 750.25 7,753 750.30 7,937 750.35 8,119 750.40 8,298 750.45 8,475				
750.207,568750.257,753750.307,937750.358,119750.408,298750.458,475				
750.25 7,753 750.30 7,937 750.35 8,119 750.40 8,298 750.45 8,475				
750.30 7,937 750.35 8,119 750.40 8,298 750.45 8,475				
750.35 8,119 750.40 8,298 750.45 8,475				
750.40 8,298 750.45 8,475				
750.45 8,475				
/50.50 8,649		,		
I	750.50	8,649		
			l	


Summary for Pond B-6: Bioretention B-6

Inflow A Inflow Outflow Primary Seconda	= 6.84 = 4.16 = 4.16	80 ac, 86.58% cfs @ 11.96 cfs @ 12.05 cfs @ 12.05 cfs @ 12.05 cfs @ 1.00	hrs, Volume hrs, Volume hrs, Volume	9= 9= 9=	0.353 af	' for 1-yr eve tten= 39%, La		
	Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 761.79' @ 12.05 hrs Surf.Area= 8,968 sf Storage= 6,734 cf							
Plug-Flow detention time= 170.3 min calculated for 0.257 af (73% of inflow) Center-of-Mass det. time= 77.4 min(865.5 - 788.1)								
Volume	Invert	Avail.Storage	Storage D	escription				
#1	761.00'	18,440 cf	Surf. Stor	rage (Prisn	natic) Listed	l below (Recale)	
Elevatio	on Surf.A	Area Ir	c.Store	Cum.Sto	ore			
(fee			pic-feet)	(cubic-fe				
761.0	1	,000	0		0			
763.0	,	,440	18,440	18,4	-			
Device	Routing	Invert Ou	tlet Devices					
#1	Primary	758.00' 12 .	0" Round C	Culvert				
		L=	100.0' CPP	^o , square e	dge headwa	all, Ke= 0.500		
		Inle	et / Outlet Inv	vert= 758.0)0' / 757.00'	S= 0.0100 '/'	Cc= 0.900	
		n=	0.012, Flow	/ Area= 0.7	'9 sf			
#2	Device 1							
	- ·		nited to weir f					
#3	Secondary	762.00' 10 .	10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)					
Primary OutFlow Max=4.13 cfs @ 12.05 hrs HW=761.79' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 4.13 cfs of 6.01 cfs potential flow) 2=Grate (Weir Controls 4.13 cfs @ 1.77 fps)								

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=761.00' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Conditions II

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Storage (cubic-feet)

Pond B-6: Bioretention B-6

Proposed Conditions - II *Type II 24-hr 1-yr Rainfall=1.84"* Printed 9/29/2022 Page 12

Proposed Conditions IIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - II Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 13

Stage-Discharge for Pond B-6: Bioretention B-6

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
761.00	0.00	0.00	0.00	762.02	6.28	6.18	0.09
761.02	0.00	0.00	0.00	762.04	6.46	6.20	0.26
761.04	0.00	0.00	0.00	762.06	6.70	6.22	0.48
761.06	0.00	0.00	0.00	762.08	6.97	6.23	0.74
761.08	0.00	0.00	0.00	762.10	7.28	6.25	1.03
761.10	0.00	0.00	0.00	762.12	7.62	6.26	1.36
761.12	0.00	0.00	0.00	762.14	7.98	6.28	1.71
761.14	0.00	0.00	0.00	762.16	8.38	6.29	2.09
761.16	0.00	0.00	0.00	762.18	8.79	6.31	2.49
761.18	0.00	0.00	0.00	762.20	9.23	6.32	2.91
761.20	0.00	0.00	0.00	762.22	9.70	6.34	3.36
761.22	0.00	0.00	0.00	762.24	10.18	6.35	3.83
761.24	0.00	0.00	0.00	762.26	10.68	6.37	4.31
761.26	0.00	0.00	0.00	762.28	11.20	6.38	4.82
761.28	0.00	0.00	0.00	762.30	11.74	6.40	5.34
761.30	0.00	0.00	0.00	762.32	12.29	6.41	5.88
761.32	0.00	0.00	0.00	762.34	12.86	6.43	6.44
761.34	0.00	0.00	0.00	762.36	13.45	6.44	7.01
761.36	0.00	0.00	0.00	762.38	14.06	6.46	7.60
761.38	0.00	0.00	0.00	762.40	14.68	6.47	8.21
761.40	0.00	0.00	0.00	762.42	15.31	6.48	8.83
761.42	0.00	0.00	0.00	762.44	15.96	6.50	9.46
761.44	0.00	0.00	0.00	762.46	16.62	6.51	10.11
761.46	0.00	0.00	0.00	762.48	17.30	6.53	10.77
761.48	0.00	0.00	0.00	762.50	17.99	6.54	11.45
761.50	0.00	0.00	0.00	762.52	18.69	6.56	12.13
761.52	0.07	0.07	0.00	762.54	19.41	6.57	12.84
761.54	0.21	0.21	0.00	762.56	20.14	6.59	13.55
761.56	0.38	0.38	0.00	762.58	20.88	6.60	14.28
761.58	0.59	0.59	0.00	762.60	21.63	6.62	15.02
761.60	0.83	0.83	0.00	762.62	22.40	6.63	15.77
761.62	1.09	1.09	0.00	762.64	23.17	6.64	16.53
761.64	1.37	1.37	0.00	762.66	23.96	6.66	17.30
761.66	1.67	1.67	0.00	762.68	24.76	6.67	18.09
761.68	2.00	2.00	0.00	762.70	25.57	6.69	18.88
761.70	2.34	2.34	0.00	762.72	26.39	6.70	19.69
761.72	2.70	2.70	0.00	762.74	27.22	6.72	20.51
761.74	3.08	3.08	0.00	762.76	28.07	6.73	21.34
761.76	3.47	3.47	0.00	762.78	28.92	6.74	22.17
761.78	3.88	3.88	0.00	762.80	29.78	6.76	23.02
761.80	4.30	4.30	0.00	762.82	30.65	6.77	23.88
761.82	4.74	4.74	0.00	762.84	31.54	6.79	24.75
761.84	5.19	5.19	0.00	762.86	32.43	6.80	25.63
761.86	5.65	5.65	0.00	762.88	33.33	6.81	26.52
761.88	6.08	6.08	0.00	762.90	34.25	6.83	27.42
761.90	6.09	6.09	0.00	762.92	35.17	6.84	28.32
761.92	6.11	6.11	0.00	762.94	36.10	6.86	29.24
761.94	6.12	6.12	0.00	762.96	37.04	6.87	30.17
761.96	6.14	6.14	0.00	762.98	37.99	6.88	31.10
761.98	6.15	6.15	0.00	763.00	38.94	6.90	32.05
762.00	6.17	6.17	0.00				
				l			

Proposed Conditions IITPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - II Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 14

Stage-Area-Storage for Pond B-6: Bioretention B-6

Elevation Surface Storage (feet) (sq-ft) (cubic-feet) 761.00 8,000 0 761.02 8,024 160 761.04 8,049 321 762.06 9,233 9,165 761.06 8,073 462 762.06 9,318 9,352 761.08 8,098 644 762.10 9,346 9,725 761.10 8,122 806 762.12 9,366 9,725 761.14 8,171 1,132 762.16 9,415 10,101 761.18 8,220 1,460 762.22 9,484 10,478 761.24 8,244 1,624 762.24 9,537 11,048 761.28 8,342 2,228 762.36 9,556 11,239 761.28 8,342 2,455 762.32 9,610 11,813 761.30 8,366 2,455 762.32 9,610 11,823 761.34			-	I		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
761.02 8.024 160 762.04 9.269 9.986 761.04 8.049 321 762.06 9.233 9.165 761.06 8.073 482 762.06 9.318 9.352 761.08 8.098 644 762.10 9.342 9.538 761.10 8.122 806 762.12 9.366 9.725 761.12 8.146 969 762.14 9.391 9.913 761.14 8.171 1.132 762.16 9.415 10.101 761.16 8.195 1.296 762.18 9.444 10.289 761.18 8.220 1.460 762.22 9.464 10.478 761.26 8.317 2.121 762.24 9.513 10.858 761.26 8.317 2.121 762.28 9.552 11.239 761.28 8.342 2.288 762.30 9.556 11.239 761.38 8.366 2.455 762.32 9.610 11.623 761.34 8.445 2.791 762.36 9.659 12.008 761.44 8.537 3.638 762.44 9.757 2.785 761.46 8.661 3.809 762.44 9.757 2.785 761.44 8.537 3.638 762.44 9.757 2.785 761.44 8.561 3.809 762.52 9.854 13.569 761.46 8.661 3.809 762.54 9.806 3.176 <td< td=""><td></td><td></td><td><u>_</u></td><td></td><td></td><td></td></td<>			<u>_</u>			
761.04 8.049 321 762.06 9.293 9.165 761.06 8.073 482 762.08 9.318 9.352 761.08 8.098 644 762.10 9.342 9.538 761.10 8.122 806 762.14 9.391 9.913 761.14 8.171 1.132 762.16 9.415 10.101 761.14 8.171 1.132 762.16 9.440 10.289 761.18 8.220 1.460 762.20 9.464 10.478 761.20 8.244 1.624 762.22 9.464 10.478 761.24 8.220 1.460 762.24 9.513 10.688 761.24 8.293 1.955 762.26 9.537 11.048 761.28 8.342 2.288 762.30 9.586 11.431 761.28 8.342 2.284 762.30 9.586 11.431 761.30 8.366 2.455 762.32 9.610 11.623 761.34 8.454 2.791 762.36 9.655 11.431 761.34 8.454 3.298 762.40 9.708 12.396 761.44 8.5512 3.468 762.44 9.757 12.785 761.44 8.561 3.809 762.44 9.757 12.785 761.44 8.566 3.981 762.50 9.830 13.373 761.50 8.634 4.325 762.54 9.757 12.785 <						
761.06 8.073 482 762.08 9.318 9.352 761.08 8.098 644 762.10 9.342 9.538 761.10 8.122 806 762.12 9.366 9.725 761.14 8.171 1.132 762.16 9.415 10.101 761.16 8.195 1.296 762.14 9.391 9.913 761.16 8.195 1.296 762.18 9.440 10.289 761.20 8.244 1.624 762.22 9.488 10.668 761.22 8.268 1.790 762.24 9.513 10.858 761.26 8.317 2.121 762.28 9.562 11.239 761.28 8.342 2.288 762.32 9.610 11.623 761.38 8.366 2.455 762.32 9.610 11.623 761.32 8.390 2.622 762.34 9.635 11.815 761.34 8.415 2.791 762.36 9.659 12.008 761.48 8.454 3.128 762.42 9.732 2.2590 761.48 8.651 3.801 762.52 9.854 13.569 761.44 8.556 3.981 762.52 9.854 13.569 761.46 8.561 3.808 762.44 9.757 12.785 761.44 8.596 4.988 762.52 9.854 13.569 761.45 8.634 4.325 762.54 9.879 13.767						
761.08 8.098 644 762.10 9.342 9.538 761.10 8.122 806 762.14 9.391 9.913 761.12 8.146 969 762.14 9.391 9.913 761.14 8.171 1.132 762.16 9.445 10.011 761.18 8.220 1.460 762.20 9.464 10.289 761.18 8.220 1.460 762.20 9.464 10.478 761.20 8.244 1.624 762.22 9.488 10.668 761.24 8.293 1.955 762.26 9.537 11.048 761.26 8.317 2.121 762.24 9.562 11.239 761.28 8.342 2.288 762.30 9.586 11.431 761.30 8.366 2.455 762.32 9.610 11.623 761.34 8.415 2.791 762.36 9.659 12.008 761.34 8.454 3.298 762.44 9.757 12.960 761.44 8.557 3.638 762.44 9.757 12.785 761.44 8.561 3.809 762.24 9.732 12.980 761.44 8.566 3.981 762.52 9.854 13.769 761.44 8.566 3.981 762.52 9.854 13.769 761.46 8.659 4.498 762.56 9.903 13.964 761.46 8.561 3.809 762.24 9.792 14.980 <td>761.04</td> <td></td> <td></td> <td></td> <td></td> <td></td>	761.04					
761.108.122806 762.12 9.3669.725 761.14 8.1711.132 762.16 9.41510.101 761.14 8.1711.132 762.16 9.44010.289 761.16 8.1951.296 762.18 9.46410.478 761.20 8.2441.624 762.22 9.46410.478 761.22 8.2681.790 762.24 9.51310.868 761.24 8.2931.955 762.26 9.53711.048 761.26 8.3172.121 762.28 9.56211.239 761.28 8.3422.288 762.30 9.58611.431 761.30 8.3662.455 762.32 9.61011.623 761.32 8.3902.662 762.34 9.65912.008 761.36 8.4392.959 762.38 9.68412.202 761.38 8.4643.128 762.40 9.70312.366 761.40 8.4863.298 762.42 9.732 12.780 761.44 8.5513.608 762.44 9.761 12.980 761.44 8.5613.809 762.44 9.761 12.980 761.46 8.5613.808 762.52 9.85413.376 761.46 8.5613.809 762.44 9.78112.980 761.46 8.5613.809 762.44 9.78112.980 761.46 8.5613.809 762.62 9.97614.362 761.46 8.569 <td>761.06</td> <td>8,073</td> <td>482</td> <td>762.08</td> <td>9,318</td> <td>9,352</td>	761.06	8,073	482	762.08	9,318	9,352
761.12 8.146 969 762.14 9.391 9.913 761.14 8.171 1.132 762.16 9.445 10.101 761.16 8.195 1.296 762.18 9.440 10.289 761.18 8.220 1.460 762.20 9.464 10.478 761.20 8.244 1.624 762.22 9.488 10.668 761.22 8.268 1.790 762.24 9.513 10.858 761.24 8.293 1.955 762.26 9.537 11.048 761.26 8.317 2.121 762.28 9.562 11.232 761.28 8.342 2.288 762.30 9.586 11.431 761.30 8.366 2.455 762.34 9.635 11.815 761.34 8.445 2.791 762.36 9.659 12.008 761.36 8.439 2.959 762.38 9.684 12.202 761.38 8.464 3.128 762.40 9.777 12.785 761.40 8.488 3.298 762.44 9.757 12.785 761.44 8.557 3.638 762.44 9.767 12.785 761.44 8.586 3.981 762.52 9.854 13.569 761.44 8.561 3.809 762.44 9.767 12.785 761.44 8.566 3.981 762.56 9.903 3.373 761.50 8.610 4.153 762.52 9.854 13.569		8,098	644	762.10	9,342	9,538
761.14 8.171 1.132 762.16 9.440 10.289 761.16 8.195 1.296 762.18 9.440 10.289 761.18 8.220 1.460 762.20 9.464 10.478 761.20 8.244 1.624 762.22 9.484 10.668 761.22 8.268 1.790 762.24 9.513 10.858 761.24 8.293 1.955 762.26 9.537 11.048 761.26 8.317 2.121 762.26 9.566 11.431 761.28 8.342 2.288 762.32 9.669 11.431 761.30 8.366 2.455 762.32 9.610 11.623 761.34 8.415 2.791 762.36 9.659 12.008 761.36 8.439 2.959 762.38 9.684 12.202 761.36 8.439 2.959 762.38 9.684 12.202 761.40 8.488 3.298 762.42 9.732 12.980 761.44 8.551 3.638 762.46 9.761 12.980 761.42 8.561 3.801 762.50 9.830 13.373 761.50 8.610 4.153 762.54 9.879 13.767 761.44 8.569 4.498 762.56 9.903 13.964 761.54 8.659 4.498 762.56 9.903 13.964 761.54 8.634 4.325 762.56 9.902 14	761.10	8,122	806	762.12	9,366	9,725
761.16 8.195 1.296 762.18 9.440 10.289 761.18 8.220 1.460 762.20 9.464 10.478 761.20 8.244 1.624 762.22 9.488 10.668 761.22 8.268 1.790 762.24 9.537 11.048 761.26 8.317 2.121 762.26 9.537 11.048 761.26 8.317 2.121 762.28 9.562 11.239 761.28 8.342 2.288 762.30 9.566 11.431 761.30 8.366 2.455 762.32 9.610 11.623 761.32 8.390 2.622 762.34 9.635 11.815 761.34 8.415 2.791 762.36 9.669 12.008 761.36 8.439 2.959 762.38 9.684 12.202 761.38 8.464 3.128 762.40 9.708 12.396 761.44 8.537 3.638 762.44 9.757 12.785 761.44 8.551 3.609 762.48 9.806 13.176 761.46 8.566 3.981 762.50 9.830 13.373 761.50 8.610 4.153 762.52 9.844 13.569 761.48 8.659 4.498 762.56 9.903 13.964 761.54 8.659 4.498 762.56 9.922 14.362 761.54 8.659 4.498 762.56 9.922 14	761.12	8,146	969	762.14	9,391	9,913
761.16 8.195 1.296 762.18 9.440 10.289 761.18 8.220 1.460 762.20 9.464 10.478 761.20 8.244 1.624 762.22 9.488 10.668 761.22 8.268 1.790 762.24 9.537 11.048 761.26 8.317 2.121 762.26 9.537 11.048 761.26 8.317 2.121 762.28 9.562 11.239 761.28 8.342 2.288 762.30 9.566 11.431 761.30 8.366 2.455 762.32 9.610 11.623 761.32 8.390 2.622 762.34 9.635 11.815 761.34 8.415 2.791 762.36 9.669 12.008 761.36 8.439 2.959 762.38 9.684 12.202 761.38 8.464 3.128 762.40 9.708 12.396 761.44 8.537 3.638 762.44 9.757 12.785 761.44 8.551 3.609 762.48 9.806 13.176 761.46 8.566 3.981 762.50 9.830 13.373 761.50 8.610 4.153 762.52 9.844 13.569 761.48 8.659 4.498 762.56 9.903 13.964 761.54 8.659 4.498 762.56 9.922 14.362 761.54 8.659 4.498 762.56 9.922 14	761.14	8,171	1,132	762.16	9,415	10,101
761.20 8.244 1.624 762.22 9.488 10.688 761.22 8.268 1.790 762.24 9.513 10.858 761.24 8.293 1.955 762.26 9.537 11.048 761.26 8.317 2.121 762.28 9.562 11.239 761.28 8.342 2.288 762.30 9.586 11.431 761.32 8.390 2.622 762.34 9.635 11.815 761.32 8.390 2.622 762.38 9.684 12.202 761.38 8.464 3.128 762.40 9.708 12.396 761.40 8.488 3.298 762.42 9.732 12.590 761.42 8.512 3.688 762.42 9.732 12.590 761.44 8.537 3.638 762.44 9.781 12.980 761.44 8.556 3.981 762.52 9.830 13.373 761.50 8.610 4.153 762.52 9.854 13.569 761.52 8.634 4.325 762.54 9.879 13.761 761.52 8.633 4.671 762.58 9.928 14.63 761.52 8.683 4.671 762.56 9.952 4.362 761.66 8.805 5.546 762.66 10.025 4.961 761.52 8.766 5.194 762.66 10.025 4.961 761.66 8.805 5.722 762.76 10.172 $16.$	761.16	8,195	1,296	762.18		10,289
761.20 8.244 1.624 762.22 9.488 10.688 761.22 8.268 1.790 762.24 9.513 10.858 761.24 8.293 1.955 762.26 9.537 11.048 761.26 8.317 2.121 762.28 9.562 11.239 761.28 8.342 2.288 762.30 9.586 11.431 761.32 8.390 2.622 762.34 9.635 11.815 761.32 8.390 2.622 762.38 9.684 12.202 761.38 8.464 3.128 762.40 9.708 12.396 761.40 8.488 3.298 762.42 9.732 12.590 761.42 8.512 3.688 762.42 9.732 12.590 761.44 8.537 3.638 762.44 9.781 12.980 761.44 8.556 3.981 762.52 9.830 13.373 761.50 8.610 4.153 762.52 9.854 13.569 761.52 8.634 4.325 762.54 9.879 13.761 761.52 8.633 4.671 762.58 9.928 14.63 761.52 8.683 4.671 762.56 9.952 4.362 761.66 8.805 5.546 762.66 10.025 4.961 761.52 8.766 5.194 762.66 10.025 4.961 761.66 8.805 5.722 762.76 10.172 $16.$	761.18	8,220	1,460	762.20	9,464	10,478
761.22 $8,268$ $1,790$ 762.24 $9,513$ $10,858$ 761.24 $8,293$ $1,955$ 762.26 $9,537$ $11,048$ 761.26 $8,317$ $2,121$ 762.26 $9,562$ $11,239$ 761.28 $8,342$ $2,288$ 762.30 $9,586$ $11,431$ 761.30 $8,366$ $2,455$ 762.32 $9,610$ $11,623$ 761.32 $8,390$ $2,622$ 762.34 $9,635$ $11,815$ 761.34 $8,415$ $2,791$ 762.36 $9,684$ $12,202$ 761.36 $8,439$ $2,959$ 762.43 $9,684$ $12,202$ 761.38 $8,464$ $3,128$ 762.40 $9,708$ $12,396$ 761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,590$ 761.42 $8,517$ $3,638$ 762.46 $9,781$ $12,980$ 761.44 $8,537$ $3,638$ 762.46 $9,781$ $12,980$ 761.46 $8,561$ $3,809$ 762.52 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,664$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,732$ $5,020$ 762.66 $10,025$ $14,362$ 761.60 $8,732$ $5,020$ 762.66 $10,025$	761.20	8,244	1,624	762.22	9,488	10,668
761.24 8.293 1.955 762.26 9.537 11.048 761.26 8.317 2.121 762.28 9.562 11.239 761.28 8.342 2.288 762.30 9.586 11.431 761.30 8.366 2.455 762.32 9.610 11.623 761.32 8.390 2.622 762.34 9.655 12.008 761.36 8.439 2.959 762.38 9.684 12.202 761.38 8.464 3.128 762.40 9.708 2.396 761.40 8.488 3.298 762.42 9.732 12.590 761.42 8.512 3.468 762.44 9.757 12.785 761.44 8.551 3.608 762.46 9.781 12.980 761.44 8.561 3.809 762.52 9.830 13.373 761.50 8.610 4.153 762.56 9.903 13.964 761.52 8.634 4.325 762.54 9.879 13.767 761.54 8.659 4.498 762.56 9.903 13.964 761.56 8.683 4.671 762.56 9.928 14.623 761.56 8.683 4.671 762.66 10.025 14.961 761.56 8.683 5.722 762.66 10.025 14.961 761.56 8.830 5.722 762.66 10.025 14.961 761.62 8.756 5.944 762.64 10.001	761.22			762.24	9,513	
761.26 $8,317$ $2,121$ 762.28 $9,562$ $11,239$ 761.28 $8,342$ $2,288$ 762.30 $9,586$ $11,431$ 761.30 $8,366$ $2,455$ 762.32 $9,610$ $11,623$ 761.32 $8,390$ $2,622$ 762.34 $9,635$ $11,815$ 761.34 $8,415$ $2,791$ 762.36 $9,659$ $12,008$ 761.36 $8,439$ $2,959$ 762.38 $9,684$ $12,202$ 761.38 $8,464$ $3,128$ 762.42 $9,732$ $12,396$ 761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,990$ 761.42 $8,512$ $3,638$ 762.44 $9,757$ $12,785$ 761.44 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.46 $8,561$ $3,809$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.56 $8,683$ $4,671$ 762.66 $10,025$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.66 $8,805$ $5,546$ 762.76 $10,147$ $15,363$ 761.76 $8,927$ $6,432$ 762.76 $10,147$						
761.28 $8,342$ $2,288$ 762.30 $9,586$ $11,431$ 761.30 $8,366$ $2,455$ 762.32 $9,610$ $11,623$ 761.32 $8,390$ $2,622$ 762.34 $9,635$ $11,815$ 761.36 $8,439$ $2,959$ 762.38 $9,684$ $12,202$ 761.36 $8,439$ $2,959$ 762.38 $9,684$ $12,202$ 761.36 $8,464$ $3,128$ 762.40 $9,708$ $12,396$ 761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,590$ 761.42 $8,512$ $3,468$ 762.44 $9,757$ $12,785$ 761.44 $8,537$ $3,638$ 762.46 $9,781$ $12,980$ 761.44 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.54 $9,976$ $14,362$ 761.54 $8,659$ $4,498$ 762.66 $9,903$ $13,964$ 761.554 $8,756$ $5,194$ 762.66 $10,025$ $14,362$ 761.66 $8,055$ $5,546$ 762.66 $10,025$ $14,961$ 761.66 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.72 $8,778$ $6,772$ 762.72 $10,098$ $15,565$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ <						
761.30 $8,366$ $2,455$ 762.32 $9,610$ $11,623$ 761.32 $8,390$ $2,622$ 762.34 $9,635$ $11,815$ 761.34 $8,415$ $2,791$ 762.36 $9,659$ $12,008$ 761.36 $8,439$ $2,959$ 762.38 $9,684$ $12,202$ 761.38 $8,464$ $3,128$ 762.40 $9,708$ $12,396$ 761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,590$ 761.42 $8,517$ $3,638$ 762.44 $9,757$ $12,785$ 761.44 $8,537$ $3,638$ 762.48 $9,806$ $13,176$ 761.46 $8,561$ $3,809$ 762.48 $9,800$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.54 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,633$ $4,671$ 762.66 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.68 $8,830$ $5,722$ 762.78 $10,172$ $16,376$ 761.74 $8,903$ $6,254$ 762.76 $10,172$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
761.32 $8,390$ $2,622$ 762.34 $9,635$ $11,815$ 761.34 $8,415$ $2,791$ 762.36 $9,659$ $12,008$ 761.36 $8,439$ $2,959$ 762.38 $9,684$ $12,202$ 761.38 $8,464$ $3,128$ 762.40 $9,708$ $12,396$ 761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,590$ 761.42 $8,512$ $3,668$ 762.44 $9,757$ $12,785$ 761.44 $8,551$ $3,609$ 762.48 $9,806$ $13,176$ 761.46 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,879$ $13,767$ 761.52 $8,634$ $4,325$ 762.54 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.56 $8,683$ $4,671$ 762.66 $9,952$ $14,362$ 761.56 $8,805$ $5,546$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.66 $10,050$ $15,162$ 761.72 $8,784$ $5,899$ 762.72 $10,098$ $15,565$ 761.74 $8,902$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
761.34 $8,415$ $2,791$ 762.36 $9,659$ $12,008$ 761.36 $8,439$ $2,959$ 762.38 $9,684$ $12,202$ 761.38 $8,464$ $3,128$ 762.40 $9,708$ $12,396$ 761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,396$ 761.42 $8,512$ $3,468$ 762.44 $9,757$ $12,785$ 761.44 $8,537$ $3,638$ 762.44 $9,757$ $12,785$ 761.46 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.50 $8,610$ $4,153$ 762.52 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.56 $9,903$ $13,964$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.56 $8,683$ $4,671$ 762.66 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.64 $8,830$ $5,722$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.78 $10,172$ $16,376$ 761.74 $8,903$ $6,254$ 762.78 $10,172$ <						
761.36 $8,439$ $2,959$ 762.38 $9,684$ $12,202$ 761.38 $8,464$ $3,128$ 762.40 $9,708$ $12,396$ 761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,590$ 761.42 $8,512$ $3,468$ 762.44 $9,757$ $12,785$ 761.44 $8,537$ $3,638$ 762.44 $9,757$ $12,785$ 761.44 $8,537$ $3,638$ 762.48 $9,806$ $13,176$ 761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.56 $9,903$ $13,964$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.64 $8,781$ $5,370$ 762.64 $10,001$ $14,761$ 761.64 $8,854$ $5,899$ 762.72 $10,074$ $15,363$ 761.72 $8,878$ $6,076$ 762.76 $10,147$ $15,970$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.74 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.76 $8,927$ $6,432$ 762.78 $10,147$ <						
761.38 $8,464$ $3,128$ 762.40 $9,708$ $12,396$ 761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,590$ 761.42 $8,512$ $3,468$ 762.44 $9,757$ $12,785$ 761.44 $8,537$ $3,638$ 762.46 $9,781$ $12,980$ 761.46 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.56 $9,903$ $13,964$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.64 $10,001$ $14,761$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,363$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.76 $10,147$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
761.40 $8,488$ $3,298$ 762.42 $9,732$ $12,590$ 761.42 $8,512$ $3,468$ 762.44 $9,757$ $12,785$ 761.44 $8,537$ $3,638$ 762.46 $9,781$ $12,980$ 761.46 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.54 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.68 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.82 $10,220$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
761.42 $8,512$ $3,468$ 762.44 $9,757$ $12,785$ 761.44 $8,537$ $3,638$ 762.46 $9,781$ $12,980$ 761.46 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.54 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.70 $8,854$ $5,899$ 762.72 $10,074$ $15,363$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.74 $8,902$ $6,770$ 762.86 $10,245$ $16,376$ 761.74 $8,904$ $7,331$ 762.86 $10,245$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
761.44 $8,537$ $3,638$ 762.46 $9,781$ $12,980$ 761.46 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.54 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.64 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,005$ $14,961$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.64 $8,805$ $5,546$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.78 $8,952$ $6,611$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,151$ 762.99 $10,318$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
761.46 $8,561$ $3,809$ 762.48 $9,806$ $13,176$ 761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.52 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.68 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.70 $8,854$ $5,899$ 762.72 $10,074$ $15,363$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.88 $9,900$ $6,970$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.84 $10,245$ <						
761.48 $8,586$ $3,981$ 762.50 $9,830$ $13,373$ 761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.54 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,881$ 761.80 $8,976$ $6,790$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.84 $9,025$ $7,150$ 762.86 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.86 $10,245$						
761.50 $8,610$ $4,153$ 762.52 $9,854$ $13,569$ 761.52 $8,634$ $4,325$ 762.54 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.68 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,871$ 761.80 $8,976$ $6,790$ 762.82 $10,220$ $16,581$ 761.84 $9,025$ $7,150$ 762.86 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.86 $9,049$ $7,331$ 762.86 $10,269$,	,			
761.52 $8,634$ $4,325$ 762.54 $9,879$ $13,767$ 761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.78 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.78 $8,952$ $6,611$ 762.80 $10,196$ $16,376$ 761.80 $8,976$ $6,790$ 762.84 $10,220$ $16,581$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.84 $9,049$ $7,331$ 762.86 $10,26$						
761.54 $8,659$ $4,498$ 762.56 $9,903$ $13,964$ 761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.66 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.78 $8,952$ $6,611$ 762.80 $10,196$ $16,376$ 761.80 $8,976$ $6,790$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.86 $10,294$ $17,196$ 761.84 $9,049$ $7,331$ 762.86 $10,294$ $17,196$ 761.84 $9,049$ $7,331$ 762.96 $10,391$ $18,023$ 761.90 $9,098$ $7,694$ 762.92 $10,342$ $17,609$ 761.92 $9,122$ $7,876$ 762.96 $10,3$						
761.56 $8,683$ $4,671$ 762.58 $9,928$ $14,163$ 761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.78 $8,952$ $6,611$ 762.82 $10,220$ $16,581$ 761.80 $8,976$ $6,790$ 762.82 $10,220$ $16,581$ 761.82 $9,000$ $6,970$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.84 $9,049$ $7,331$ 762.88 $10,294$ $17,196$ 761.92 $9,049$ $7,331$ 762.94 $10,367$ $17,816$ 761.92 $9,122$ $7,876$ 762.94 $10,367$ $17,816$ 761.94 $9,147$ $8,059$ 762.96 $10,$						
761.58 $8,708$ $4,845$ 762.60 $9,952$ $14,362$ 761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.78 $8,952$ $6,611$ 762.80 $10,196$ $16,376$ 761.80 $8,976$ $6,790$ 762.82 $10,220$ $16,581$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.84 $9,074$ $7,512$ 762.90 $10,318$ $17,402$ 761.90 $9,098$ $7,694$ 762.92 $10,342$ $17,609$ 761.92 $9,122$ $7,876$ 762.94 $10,367$ $17,816$ 761.94 $9,147$ $8,059$ 762.96 $10,391$ $18,023$ 761.98 $9,196$ $8,426$ 763.00 $10,440$ $18,440$						
761.60 $8,732$ $5,020$ 762.62 $9,976$ $14,561$ 761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.78 $8,952$ $6,611$ 762.80 $10,196$ $16,376$ 761.80 $8,976$ $6,790$ 762.82 $10,220$ $16,581$ 761.82 $9,000$ $6,970$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.86 $9,049$ $7,331$ 762.88 $10,294$ $17,196$ 761.88 $9,074$ $7,512$ 762.90 $10,318$ $17,402$ 761.90 $9,098$ $7,694$ 762.92 $10,342$ $17,609$ 761.94 $9,147$ $8,059$ 762.96 $10,391$ $18,023$ 761.98 $9,196$ $8,426$ 763.00 $10,440$ $18,440$						
761.62 $8,756$ $5,194$ 762.64 $10,001$ $14,761$ 761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.78 $8,952$ $6,611$ 762.80 $10,196$ $16,376$ 761.80 $8,976$ $6,790$ 762.82 $10,220$ $16,581$ 761.82 $9,000$ $6,970$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.86 $9,049$ $7,331$ 762.88 $10,294$ $17,196$ 761.90 $9,098$ $7,694$ 762.92 $10,342$ $17,609$ 761.92 $9,122$ $7,876$ 762.94 $10,367$ $17,816$ 761.94 $9,147$ $8,059$ 762.96 $10,391$ $18,023$ 761.96 $9,171$ $8,242$ 762.98 $10,416$ $18,231$ 761.98 $9,196$ $8,426$ 763.00 $10,440$ $18,440$						
761.64 $8,781$ $5,370$ 762.66 $10,025$ $14,961$ 761.66 $8,805$ $5,546$ 762.68 $10,050$ $15,162$ 761.68 $8,830$ $5,722$ 762.70 $10,074$ $15,363$ 761.70 $8,854$ $5,899$ 762.72 $10,098$ $15,565$ 761.72 $8,878$ $6,076$ 762.74 $10,123$ $15,767$ 761.74 $8,903$ $6,254$ 762.76 $10,147$ $15,970$ 761.76 $8,927$ $6,432$ 762.78 $10,172$ $16,173$ 761.78 $8,952$ $6,611$ 762.80 $10,196$ $16,376$ 761.80 $8,976$ $6,790$ 762.82 $10,220$ $16,581$ 761.82 $9,000$ $6,970$ 762.84 $10,245$ $16,785$ 761.84 $9,025$ $7,150$ 762.86 $10,269$ $16,990$ 761.86 $9,049$ $7,331$ 762.88 $10,294$ $17,196$ 761.90 $9,098$ $7,694$ 762.92 $10,318$ $17,402$ 761.92 $9,122$ $7,876$ 762.94 $10,367$ $17,816$ 761.94 $9,147$ $8,059$ 762.96 $10,391$ $18,231$ 761.98 $9,196$ $8,426$ 763.00 $10,440$ $18,440$						
761.668,8055,546762.6810,05015,162761.688,8305,722762.7010,07415,363761.708,8545,899762.7210,09815,565761.728,8786,076762.7410,12315,767761.748,9036,254762.7610,14715,970761.768,9276,432762.7810,17216,173761.788,9526,611762.8010,19616,376761.808,9766,790762.8210,22016,581761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.989,1968,426763.0010,44018,440						
761.688,8305,722762.7010,07415,363761.708,8545,899762.7210,09815,565761.728,8786,076762.7410,12315,767761.748,9036,254762.7610,14715,970761.768,9276,432762.7810,17216,173761.788,9526,611762.8010,19616,376761.808,9766,790762.8210,22016,581761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.708,8545,899762.7210,09815,565761.728,8786,076762.7410,12315,767761.748,9036,254762.7610,14715,970761.768,9276,432762.7810,17216,173761.788,9526,611762.8010,19616,376761.808,9766,790762.8210,22016,581761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.728,8786,076762.7410,12315,767761.748,9036,254762.7610,14715,970761.768,9276,432762.7810,17216,173761.788,9526,611762.8010,19616,376761.808,9766,790762.8210,22016,581761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440			,			
761.748,9036,254762.7610,14715,970761.768,9276,432762.7810,17216,173761.788,9526,611762.8010,19616,376761.808,9766,790762.8210,22016,581761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.989,1968,426763.0010,44018,440						
761.768,9276,432762.7810,17216,173761.788,9526,611762.8010,19616,376761.808,9766,790762.8210,22016,581761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.989,1968,426763.0010,44018,440					,	
761.788,9526,611762.8010,19616,376761.808,9766,790762.8210,22016,581761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.808,9766,790762.8210,22016,581761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.829,0006,970762.8410,24516,785761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.849,0257,150762.8610,26916,990761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.869,0497,331762.8810,29417,196761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440					,	
761.889,0747,512762.9010,31817,402761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.909,0987,694762.9210,34217,609761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.929,1227,876762.9410,36717,816761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.949,1478,059762.9610,39118,023761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.969,1718,242762.9810,41618,231761.989,1968,426763.0010,44018,440						
761.98 9,196 8,426 763.00 10,440 18,440						
		,				
762.00 9,220 8,610				763.00	10,440	18,440
	762.00	9,220	8,610			

Summary for Link 2AR: 2A Reach

Inflow Are	a =	43.007 ac, 86.82% Impervious, Inflow Depth = 1.39" for 1-yr event
Inflow	=	64.21 cfs @ 12.12 hrs, Volume=
Primary	=	63.38 cfs @ 12.23 hrs, Volume= 4.993 af, Atten= 1%, Lag= 7.0 min

Primary outflow = Inflow delayed by 6.9 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2AT: DA 2A Total

Inflow Are	a =	43.007 ac, 86.82% Impervious, Inflow Depth = 1.39" for 1-yr event
Inflow	=	64.21 cfs @ 12.12 hrs, Volume=
Primary	=	64.21 cfs @ 12.12 hrs, Volume= 4.993 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BP: Bypass

Inflow Area =	17.418 ac, 99.32% Impervious, Inflow	Depth = 1.62" for 1-yr event
Inflow =	43.13 cfs @ 11.96 hrs, Volume=	2.345 af
Primary =	43.13 cfs @ 11.96 hrs, Volume=	2.345 af, Atten= 0%, Lag= 0.0 min
Secondary =	0.00 cfs @ 1.00 hrs, Volume=	0.000 af

Primary outflow = Inflow below 70.00 cfs, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BR: 2BR

Inflow Are	a =	11.872 ac,100.00% Impervious, Inflow Depth = 1.62" for 1-yr event
Inflow	=	29.40 cfs @ 11.96 hrs, Volume= 1.599 af
Primary	=	28.54 cfs @ 12.10 hrs, Volume= 1.599 af, Atten= 3%, Lag= 8.0 min

Primary outflow = Inflow delayed by 8.0 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2DT: DA 2D Total

Inflow Are	a =	17.418 ac, 99.32% Impervious, Inflow Depth = 1.62" for 1-yr event
Inflow	=	43.13 cfs @ 11.96 hrs, Volume= 2.345 af
Primary	=	43.13 cfs @ 11.96 hrs, Volume= 2.345 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP #2 - Smokes Crk

Inflow Are	a =	83.814 ac, 88.53% Impervious, Inflow Depth = 1.42" for 1-yr event
Inflow	=	101.88 cfs @ 12.00 hrs, Volume= 9.921 af
Primary	=	101.88 cfs @ 12.00 hrs, Volume= 9.921 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 2A-I: DA #2A-I

Runoff = 111.62 cfs @ 12.12 hrs, Volume= 9.006 af, Depth= 2.70"

Area	(ac) (CN Des	cription			
0	.883	74 >75	% Grass c	over, Good	, HSG C	
3	754	80 >75	% Grass c	over, Good	, HSG D	
5	.748	98 Pav	ed parking	, HSG C		
29	.010	98 Pav	ed parking	, HSG D		
0	.000	96 Gravel surface, HSG C				
0.632 96 Gravel surface, HSG D						
0.000 77 Woods, Good, HSG D						
			ghted Avei	•		
	.269		6% Pervio			
34	.758	86.8	4% Imper	∕ious Area		
_				a 14	— • • •	
Tc	Length		Velocity		Description	
(min)	(feet)		(ft/sec)	(cfs)		
1.9	98	0.0100	0.86		Sheet Flow,	
(a -					Smooth surfaces n= 0.011 P2= 2.20"	
13.7	65	0.0150	0.08		Sheet Flow,	
	0.0	0.0400	4.04		Grass: Dense n= 0.240 P2= 2.20"	
0.8	80	0.0100	1.61		Shallow Concentrated Flow,	
0.4	220	0.0450	0.40		Unpaved Kv= 16.1 fps	
2.1	320	0.0150	2.49		Shallow Concentrated Flow,	
1.7	446		4.50		Paved Kv= 20.3 fps Direct Entry, Pipe Flow	
20.2			4.50			
20.2	1,009	Total				

Summary for Subcatchment 2A-II: DA #2A-II

Runoff = 12.48 cfs @ 11.96 hrs, Volume= 0.670 af, Depth= 2.70"

Area	(ac)	CN	Desc	ription		
0.	000	74	>75%	6 Grass co	over, Good,	, HSG C
0.	400	80	>75%	6 Grass co	over, Good,	, HSG D
0.	000	98		d parking,		
2.	580	98		d parking,		
0.	000	96	Grav	el surface	, HSG C	
	000	96		el surface	,	
0.	000	77	Woo	ds, Good,	HSG D	
2.	980	96	Weig	phted Aver	age	
0.	400		13.42	2% Pervio	us Area	
2.	580		86.58	3% Imperv	vious Area	
Tc	Length		lope	Velocity	Capacity	Description
(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	
1.6	100	0.0)150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
3.0	450	0.0)150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
4.6	550) To	tal, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 2B: DA #2B

Runoff = 51.38 cfs @ 11.96 hrs, Volume= 2.887 af, Depth= 2.92"

Area ((ac) C	N Des	cription						
0.	000 7	′4 >75°	% Grass c	over, Good	, HSG C				
0.	3 000	30 >75°	% Grass c	over, Good	, HSG D				
2.	682 9	8 Pave	ed parking	, HSG C					
9.	190 9		ved parking, HSG D						
0.0	000 9	6 Grav	Gravel surface, HSG C						
0.	000 9	6 Grav	/el surface	, HSG D					
0.	<u>000 7</u>	'7 Woo	ods, Good,	HSG D					
11.	872 9	8 Wei	ghted Avei	age					
11.	872	100.	00% Impe	rvious Area	1				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.9	100	0.0100	0.86		Sheet Flow,				
					Smooth surfaces n= 0.011 P2= 2.20"				
1.6	200	0.0100	2.03		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
3.5	300	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment 2C: DA #2C

Runoff = 42.21 cfs @ 11.97 hrs, Volume= 2.122 af, Depth= 2.21"

Area	(ac)	CN	Desc	cription		
0.	913	74	>75%	% Grass co	over, Good,	, HSG C
2.	316	80	>75%	% Grass co	over, Good,	, HSG D
1.	729	98		ed parking,		
	964	98		ed parking,		
0.	000	96		el surface	,	
	000	96		el surface	,	
0.	595	77	Woo	ds, Good,	HSG D	
11.	517	91		ghted Aver	0	
-	824			0% Pervio		
7.	693		66.8	0% Imperv	vious Area	
_		_			•	-
Tc	Length		lope	Velocity	Capacity	Description
(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	
1.9	100	0.0	0100	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.6	200	0.0	0100	2.03		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
3.5	300) To	tal, lı	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 2D: DA #2D

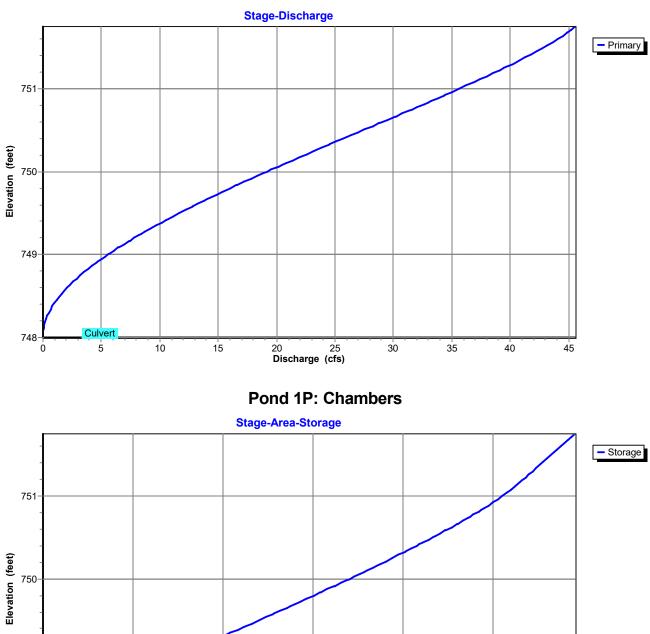
Runoff = 75.39 cfs @ 11.96 hrs, Volume= 4.235 af, Depth= 2.92"

Area	(ac)	CN	Desc	cription		
0	.000	74	>75%	6 Grass co	over, Good,	, HSG C
0	.118	80	>75%	6 Grass co	over, Good,	, HSG D
10	.554	98		ed parking,		
-	.746	98		ed parking,		
0	.000	96		el surface		
0	.000	96		el surface		
0	.000	77	Woo	ds, Good,	HSG D	
17	.418	98		ghted Aver		
-	.118		0.68	% Perviou	s Area	
17.	.300		99.3	2% Imperv	∕ious Area	
Tc	Lengt		Slope	Velocity	Capacity	Description
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
1.9	9	0 8	.0100	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.7	44	-6		4.50		Direct Entry, Pipe Flow
3.6	54	4 T	otal, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Pond 1P: Chambers

Inflow	=	4.83 cfs @	11.95 hrs, Volume=	0.020 af
Outflow	=	0.78 cfs @	12.01 hrs, Volume=	0.020 af, Atten= 84%, Lag= 3.6 min
Primary	=	0.78 cfs @	12.01 hrs, Volume=	0.020 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 748.37' @ 12.01 hrs Surf.Area= 5,210 sf Storage= 777 cf


Plug-Flow detention time= 78.1 min calculated for 0.020 af (99% of inflow) Center-of-Mass det. time= 80.5 min (797.5 - 717.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	748.00'	5,151 cf	58.50'W x 89.06'L x 3.75'H Field A
			19,537 cf Overall - 6,658 cf Embedded = 12,878 cf x 40.0% Voids
#2A	748.75'	6,658 cf	ADS_StormTech DC-780 +Cap x 144 Inside #1
			Effective Size= 45.4"W x 30.0"H => 6.49 sf x 7.12L = 46.2 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			144 Chambers in 12 Rows
		11,810 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	748.00'	36.0" Round Culvert L= 165.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 748.00' / 747.35' S= 0.0039 '/' Cc= 0.900 n= 0.012, Flow Area= 7.07 sf

Proposed Conditions IITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Pond 1P: Chambers

Proposed Conditions IITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

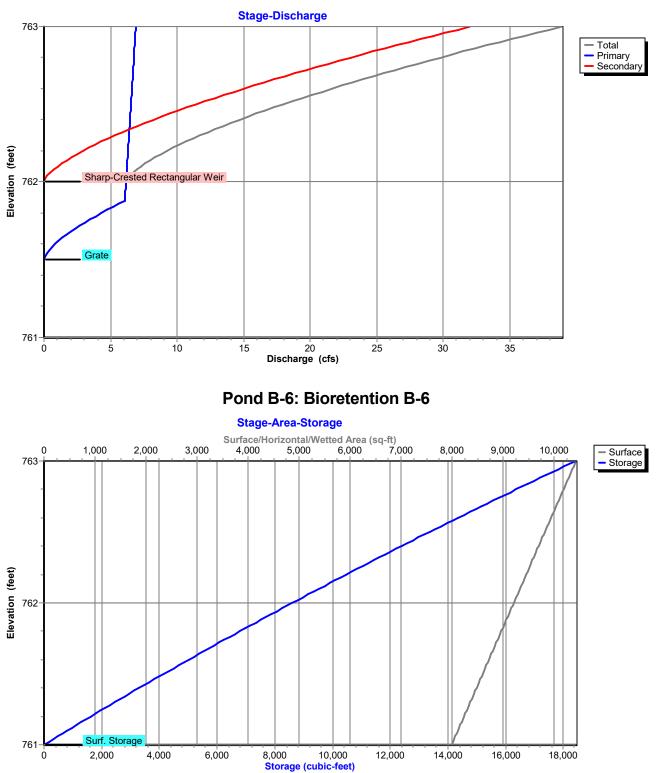
Proposed Conditions - II Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 28

Stage-Discharge for Pond 1P: Chambers

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
748.00	0.00	749.02	5.77	750.04	19.80	751.06	36.60
748.02	0.00	749.04	5.99	750.06	20.12	751.08	36.91
748.04	0.01	749.06	6.20	750.08	20.44	751.10	37.22
748.06	0.02	749.08	6.42	750.10	20.76	751.12	37.53
748.08	0.03	749.10	6.65	750.12	21.09	751.14	37.84
748.10	0.05	749.12	6.87	750.14	21.41	751.16	38.14
748.12	0.07	749.14	7.10	750.16	21.74	751.18	38.45
748.14	0.10	749.16	7.33	750.18	22.07	751.20	38.75
748.16	0.13	749.18	7.57	750.20	22.40	751.22	39.05
748.18	0.17	749.20	7.81	750.22	22.73	751.24	39.34
748.20	0.22	749.22	8.05	750.24	23.05	751.26	39.63
748.22	0.26	749.24	8.29	750.26	23.39	751.28	39.92
748.24	0.32	749.26	8.53	750.28	23.72	751.30	40.21
748.26	0.37	749.28	8.78	750.30	24.05	751.32	40.50
748.28	0.44	749.30	9.03	750.32	24.38	751.34	40.78
748.30	0.50	749.32	9.29	750.34	24.71	751.36	41.06
748.32	0.58	749.34	9.54	750.36	25.05	751.38	41.33
748.34	0.65	749.36	9.80	750.38	25.38	751.40	41.60
748.36	0.74	749.38	10.06	750.40	25.71	751.42	41.87
748.38	0.82	749.40	10.33	750.42	26.05	751.44	42.13
748.40	0.91	749.42	10.59	750.44	26.38	751.46	42.39
748.42	1.01	749.44	10.86	750.46	26.72	751.48	42.65
748.44	1.11	749.46	11.13	750.48	27.05	751.50	42.90
748.46	1.21	749.48	11.40	750.50	27.39	751.52	43.14
748.48	1.32	749.50	11.68	750.52	27.72	751.54	43.38
748.50	1.44	749.52	11.95	750.54	28.06	751.56	43.62
748.52	1.55	749.54	12.23	750.56	28.39	751.58	43.85
748.54	1.68	749.56	12.51	750.58	28.73	751.60	44.07
748.56	1.80	749.58	12.80	750.60	29.06	751.62	44.29
748.58	1.93	749.60	13.08	750.62	29.40	751.64	44.50
748.60	2.07	749.62	13.37	750.64	29.73	751.66	44.71
748.62	2.21	749.64	13.66	750.66	30.07	751.68	44.91
748.64	2.35	749.66	13.95	750.68	30.40	751.70	45.10
748.66	2.50	749.68	14.24	750.70	30.74	751.72	45.28
748.68	2.65	749.70	14.54	750.72	31.07	751.74	45.45
748.70	2.80	749.72	14.84	750.74	31.40		
748.72	2.96	749.74	15.13	750.76	31.73		
748.74	3.12	749.76	15.43	750.78	32.06		
748.76	3.29	749.78	15.74	750.80	32.40		
748.78	3.46	749.80	16.04	750.82	32.73		
748.80	3.63	749.82	16.35	750.84	33.05		
748.82	3.81	749.84	16.65	750.86	33.38		
748.84	3.99	749.86	16.96	750.88	33.71		
748.86	4.18	749.88	17.27	750.90	34.04		
748.88	4.36	749.90	17.58	750.92	34.36		
748.90	4.56	749.92	17.89	750.94	34.68		
748.92	4.75	749.94	18.21	750.96	35.01		
748.94	4.95	749.96	18.52	750.98	35.33		
748.96	5.15	749.98	18.84	751.00	35.65		
748.98	5.35	750.00	19.16	751.02	35.97		
749.00	5.56	750.02	19.48	751.04	36.28		

Proposed Conditions IIType II 24-hr10-yr Rainfall=3.15"Prepared by Pinewoods Engineering, P.C.Printed 9/29/2022HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLCPage 29

Stage-Area-Storage for Pond 1P: Chambers


Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
748.00	0	750.55	8,820
748.05	104	750.60	8,989
748.10 748.15	208 313	750.65 750.70	9,154 9,317
748.20	417	750.75	9,476
748.25	521	750.80	9,631
748.30	625	750.85	9,782
748.35	729	750.90	9,927
748.40	834	750.95	10,067
748.45 748.50	938 1,042	751.00 751.05	10,198 10,322
748.55	1,146	751.10	10,440
748.60	1,250	751.15	10,552
748.65	1,355	751.20	10,662
748.70	1,459	751.25	10,768
748.75	1,563 1,783	751.30	10,872 10,976
748.80 748.85	2,003	751.35 751.40	11,080
748.90	2,223	751.45	11,185
748.95	2,441	751.50	11,289
749.00	2,659	751.55	11,393
749.05 749.10	2,876 3,092	751.60 751.65	11,497 11,601
749.10	3,308	751.00	11,706
749.20	3,522	751.75	11,810
749.25	3,736		
749.30	3,949		
749.35 749.40	4,161 4,371		
749.45	4,581		
749.50	4,790		
749.55	4,997		
749.60	5,204		
749.65 749.70	5,408 5,612		
749.75	5,814		
749.80	6,015		
749.85	6,215		
749.90	6,413		
749.95 750.00	6,610 6,805		
750.05	6,998		
750.10	7,190		
750.15	7,380		
750.20	7,568		
750.25 750.30	7,753 7,937		
750.35	8,119		
750.40	8,298		
750.45	8,475		
750.50	8,649		
		I	

Summary for Pond B-6: Bioretention B-6

Inflow Area = 2.980 ac, 86.58% Impervious, Inflow Depth = 2.70" for 10-yr event Inflow = 12.48 cfs @ 11.96 hrs, Volume= 0.670 af Outflow = 7.53 cfs @ 12.05 hrs, Volume= 0.575 af, Atten= 40%, Lag= 5.3 min Primary = 6.26 cfs @ 12.05 hrs, Volume= 0.564 af Secondary = 1.27 cfs @ 12.05 hrs, Volume= 0.011 af								
	by Dyn-Stor-Ind ev= 762.11' @ 1							
	ow detention time of-Mass det. time Invert	e= 58.9 min ())	36% of inflov	N)		
<u>volume</u> #1	761.00'				natic) Listed	below (Recale	~)	
#1	701.00	10,440 (J Sun. Stor	laye (Fiisii	Ialic) Listeu		5)	
Elevatio	on Surf.A	\rea	Inc.Store	Cum.Sto	ore			
(fee	et) (se	q-ft) (cı	ubic-feet)	(cubic-fee	et)			
761.0	0 8,	,000	0		0			
763.0)0 10,	,440	18,440	18,44	40			
Device	Routing	Invert C	utlet Devices					
#1	Primary		2.0" Round C					
						II, Ke= 0.500		
						S= 0.0100 '/'	Cc= 0.900	
#2	Device 1		= 0.012, Flow 4.0'' x 24.0'' H					
#2	Device 1		imited to weir					
#3	Secondary					ar Weir 2 End	Contraction(s)	
Primary OutFlow Max=6.26 cfs @ 12.05 hrs HW=762.11' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 6.26 cfs @ 7.97 fps) 2=Grate (Passes 6.26 cfs of 12.56 cfs potential flow)								

Secondary OutFlow Max=1.25 cfs @ 12.05 hrs HW=762.11' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Weir Controls 1.25 cfs @ 1.10 fps)

Proposed Conditions II

Pond B-6: Bioretention B-6

Proposed Conditions IIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - II Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 32

Stage-Discharge for Pond B-6: Bioretention B-6

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
761.00	0.00	0.00	0.00	762.02	6.28	6.18	0.09
761.02	0.00	0.00	0.00	762.04	6.46	6.20	0.26
761.04	0.00	0.00	0.00	762.06	6.70	6.22	0.48
761.06	0.00	0.00	0.00	762.08	6.97	6.23	0.74
761.08	0.00	0.00	0.00	762.10	7.28	6.25	1.03
761.10	0.00	0.00	0.00	762.12	7.62	6.26	1.36
761.12	0.00	0.00	0.00	762.14	7.98	6.28	1.71
761.14	0.00	0.00	0.00	762.16	8.38	6.29	2.09
761.16	0.00	0.00	0.00	762.18	8.79	6.31	2.49
761.18	0.00	0.00	0.00	762.20	9.23	6.32	2.91
761.20	0.00	0.00	0.00	762.22	9.70	6.34	3.36
761.22	0.00	0.00	0.00	762.24	10.18	6.35	3.83
761.24	0.00	0.00	0.00	762.26	10.68	6.37	4.31
761.26	0.00	0.00	0.00	762.28	11.20	6.38	4.82
761.28	0.00	0.00	0.00	762.30	11.74	6.40	5.34
761.30	0.00	0.00	0.00	762.32	12.29	6.41	5.88
761.32	0.00	0.00	0.00	762.34	12.86	6.43	6.44
761.34	0.00	0.00	0.00	762.36	13.45	6.44	7.01
761.36	0.00	0.00	0.00	762.38	14.06	6.46	7.60
761.38	0.00	0.00	0.00	762.40	14.68	6.47	8.21
761.40	0.00	0.00	0.00	762.42	15.31	6.48	8.83
761.42	0.00	0.00	0.00	762.44	15.96	6.50	9.46
761.44	0.00	0.00	0.00	762.46	16.62	6.51	10.11
761.46	0.00	0.00	0.00	762.48	17.30	6.53	10.77
761.48	0.00	0.00	0.00	762.50	17.99	6.54	11.45
761.50	0.00	0.00	0.00	762.52	18.69	6.56	12.13
761.52	0.07	0.07	0.00	762.54	19.41	6.57	12.84
761.54	0.21	0.21	0.00	762.56	20.14	6.59	13.55
761.56	0.38	0.38	0.00	762.58	20.88	6.60	14.28
761.58	0.59	0.59	0.00	762.60	21.63	6.62	15.02
761.60	0.83	0.83	0.00	762.62	22.40	6.63	15.77
761.62	1.09	1.09	0.00	762.64	23.17	6.64	16.53
761.64	1.37	1.37	0.00	762.66	23.96	6.66	17.30
761.66	1.67	1.67	0.00	762.68	24.76	6.67	18.09
761.68	2.00	2.00	0.00	762.70	25.57	6.69	18.88
761.70	2.34	2.34	0.00	762.72	26.39	6.70	19.69
761.72	2.70	2.70	0.00	762.74	27.22	6.72	20.51
761.74	3.08	3.08	0.00	762.76	28.07	6.73	21.34
761.76	3.47	3.47	0.00	762.78	28.92	6.74	22.17
761.78	3.88	3.88	0.00	762.80	29.78	6.76	23.02
761.80	4.30	4.30	0.00	762.82	30.65 31.54	6.77	23.88
761.82 761.84	4.74 5.19	4.74 5.19	0.00 0.00	762.84 762.86	31.54 32.43	6.79 6.80	24.75 25.63
761.86	5.65	5.65	0.00	762.88	33.33	6.81	25.03
761.88	6.08	6.08	0.00	762.90	34.25	6.83	20.52
761.88	6.08	6.08 6.09	0.00	762.90	34.25 35.17	6.84	27.42
761.90	6.11	6.11	0.00	762.92	36.10	6.86	20.32
761.92	6.12	6.12	0.00	762.94	37.04	6.87	30.17
761.94	6.14	6.14	0.00	762.98	37.99	6.88	31.10
761.98	6.15	6.15	0.00	763.00	38.94	6.90	32.05
762.00	6.17	6.17	0.00		2010-1	0.00	52.00
	0	0.17	0.00				

Proposed Conditions IITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-6: Bioretention B-6

Floyetion	Surface	Storage	Flovetion	Surface	Storogo
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (foot)	Surface	Storage (cubic-feet)
761.00			(feet)	(sq-ft)	
	8,000	0 160	762.02 762.04	9,244	8,795
761.02 761.04	8,024			9,269	8,980
	8,049	321 482	762.06 762.08	9,293	9,165 9,352
761.06	8,073			9,318	
761.08	8,098	644	762.10	9,342	9,538
761.10 761.12	8,122	806	762.12	9,366	9,725
	8,146 8,171	969 1,132	762.14 762.16	9,391	9,913 10,101
761.14 761.16	8,195	1,132	762.18	9,415 9,440	10,101
761.18	8,220	1,290	762.18	9,440 9,464	10,289
761.20	8,244		762.20	9,404 9,488	
761.20		1,624	762.22	9,488	10,668 10,858
761.22	8,268 8,293	1,790 1,955	762.24	9,513	
761.24	8,317	2,121	762.28	9,562	11,048 11,239
761.28	8,342	2,121	762.30	9,586	11,431
761.30	8,366	2,200	762.30	9,610	11,623
761.30	8,390		762.32	9,635	
761.32	8,415	2,622 2,791	762.34	9,659	11,815 12,008
761.34	8,439	2,959	762.38	9,684	12,000
761.38	8,464	3,128	762.40	9,708	12,202
761.40	8,488	3,298	762.40	9,708	12,590
761.40	8,512	3,468	762.42	9,752	12,590
761.42	8,537	3,638	762.46	9,781	12,980
761.46	8,561	3,809	762.48	9,806	13,176
761.48	8,586	3,981	762.50	9,830	13,373
761.50	8,610	4,153	762.52	9,854	13,569
761.50	8,634	4,325	762.54	9,879	13,767
761.54	8,659	4,498	762.56	9,903	13,964
761.54	8,683	4,671	762.58	9,928	14,163
761.58	8,708	4,845	762.60	9,952	14,362
761.60	8,732	5,020	762.62	9,976	14,561
761.62	8,756	5,194	762.64	10,001	14,761
761.64	8,781	5,370	762.66	10,025	14,961
761.66	8,805	5,546	762.68	10,050	15,162
761.68	8,830	5,722	762.70	10,074	15,363
761.70	8,854	5,899	762.72	10,098	15,565
761.72	8,878	6,076	762.74	10,123	15,767
761.74	8,903	6,254	762.76	10,147	15,970
761.76	8,927	6,432	762.78	10,172	16,173
761.78	8,952	6,611	762.80	10,196	16,376
761.80	8,976	6,790	762.82	10,220	16,581
761.82	9,000	6,970	762.84	10,245	16,785
761.84	9,025	7,150	762.86	10,269	16,990
761.86	9,049	7,331	762.88	10,294	17,196
761.88	9,074	7,512	762.90	10,318	17,402
761.90	9,098	7,694	762.92	10,342	17,609
761.92	9,122	7,876	762.94	10,367	17,816
761.94	9,147	8,059	762.96	10,391	18,023
761.96	9,171	8,242	762.98	10,416	18,231
761.98	9,196	8,426	763.00	10,440	18,440
762.00	9,220	8,610			

Summary for Link 2AR: 2A Reach

 Inflow Area =
 43.007 ac, 86.82% Impervious, Inflow Depth =
 2.67" for 10-yr event

 Inflow =
 118.34 cfs @
 12.12 hrs, Volume=
 9.581 af

 Primary =
 116.85 cfs @
 12.23 hrs, Volume=
 9.581 af, Atten= 1%, Lag= 7.0 min

Primary outflow = Inflow delayed by 6.9 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2AT: DA 2A Total

Inflow Are	a =	43.007 ac, 86.82% Impervious, Inflow Depth = 2.67" for 10-yr event
Inflow	=	118.34 cfs @ 12.12 hrs, Volume= 9.581 af
Primary	=	118.34 cfs @ 12.12 hrs, Volume= 9.581 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BP: Bypass

Inflow Area =	17.418 ac, 99.32% Impervious, Inflow I	Depth = 2.92" for 10-yr event
Inflow =	75.39 cfs @ 11.96 hrs, Volume=	4.235 af
Primary =	71.09 cfs @ 11.97 hrs, Volume=	4.215 af, Atten= 6%, Lag= 0.7 min
Secondary =	4.83 cfs @ 11.95 hrs, Volume=	0.020 af

Primary outflow = Inflow below 70.00 cfs, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BR: 2BR

Inflow Are	a =	11.872 ac,100.00% Impervious, Inflow Depth = 2.92" for 10-yr event
Inflow	=	51.38 cfs @ 11.96 hrs, Volume= 2.887 af
Primary	=	49.89 cfs @ 12.09 hrs, Volume= 2.887 af, Atten= 3%, Lag= 8.0 min

Primary outflow = Inflow delayed by 8.0 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2DT: DA 2D Total

Inflow Area	a =	17.418 ac, 99.32% Impervious, Inflow Depth = 2.92" for 10-yr event
Inflow	=	73.65 cfs @ 11.98 hrs, Volume= 4.235 af
Primary	=	73.65 cfs @ 11.98 hrs, Volume= 4.235 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP #2 - Smokes Crk

 Inflow Area =
 83.814 ac, 88.53% Impervious, Inflow Depth =
 2.70" for 10-yr event

 Inflow =
 193.21 cfs @
 12.00 hrs, Volume=
 18.824 af

 Primary =
 193.21 cfs @
 12.00 hrs, Volume=
 18.824 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 2A-I: DA #2A-I

Runoff = 139.28 cfs @ 12.12 hrs, Volume= 11.379 af, Depth= 3.41"

Area	(ac) (N Des	cription		
0.	.883	74 >75	% Grass co	, HSG C	
3.	754	80 >75°	% Grass co	over, Good	, HSG D
5.	748	98 Pave	ed parking	, HSG C	
29.	.010	98 Pave	ed parking	, HSG D	
0.	.000	96 Grav	vel surface	, HSG C	
			vel surface	,	
0.	.000	77 Woo	ods, Good,	HSG D	
40.	.027		ghted Aver	0	
-	.269	-	6% Pervio		
34.	.758	86.8	4% Imper	/ious Area	
_		-			
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.9	98	0.0100	0.86		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.20"
13.7	65	0.0150	0.08		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.20"
0.8	80	0.0100	1.61		Shallow Concentrated Flow,
0.4	000	0.0450	0.40		Unpaved Kv= 16.1 fps
2.1	320	0.0150	2.49		Shallow Concentrated Flow,
4 7	440		4 50		Paved Kv= 20.3 fps
1.7	446	.	4.50		Direct Entry, Pipe Flow
20.2	1,009	Total			

Summary for Subcatchment 2A-II: DA #2A-II

Runoff = 15.55 cfs @ 11.96 hrs, Volume= 0.847 af, Depth= 3.41"

Area	(ac)	CN	Desc	ription		
0.	000	74	>75%	6 Grass co	over, Good,	, HSG C
0.	400	80	>75%	6 Grass co	over, Good,	, HSG D
0.	000	98		d parking,		
2.	580	98		d parking,		
0.	000	96	Grav	el surface	, HSG C	
	000	96		el surface	,	
0.	000	77	Woo	ds, Good,	HSG D	
2.	980	96	Weig	phted Aver	age	
0.	400		13.42	2% Pervio	us Area	
2.	580		86.58	3% Imperv	vious Area	
Tc	Length		lope	Velocity	Capacity	Description
(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	
1.6	100	0.0)150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
3.0	450	0.0)150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
4.6	550) To	tal, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 2B: DA #2B

Runoff = 63.39 cfs @ 11.96 hrs, Volume= 3.597 af, Depth= 3.64"

Area	(ac) (N De	scription		
0.	000	74 >7	5% Grass c	over, Good	, HSG C
0.	000	80 >7	5% Grass c	over, Good	, HSG D
2.	682		ved parking		
9.	190		ved parking		
0.	000	96 Gra	avel surface	e, HSG C	
0.	000		avel surface	,	
0.	000	77 Wo	ods, Good,	HSG D	
11.	872	98 We	eighted Ave	rage	
11.	872	100	0.00% Impe	rvious Area	ì
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
1.9	100	0.0100	0.86		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.20"
1.6	200	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
3.5	300	Total,	Increased	to minimum	Tc = 6.0 min

Summary for Subcatchment 2C: DA #2C

Runoff = 54.38 cfs @ 11.97 hrs, Volume= 2.777 af, Depth= 2.89"

Area	(ac)	CN	Desc	ription		
0.	913	74	>75%	6 Grass co	over, Good	, HSG C
2.	316				over, Good	, HSG D
	729			d parking,		
	964			d parking,		
	000			el surface	,	
	000			el surface	,	
0.	595		Woo	ds, Good,	HSG D	
	517			hted Aver	•	
-	824			0% Pervio		
7.	693		66.80	0% Imperv	vious Area	
Та				Valacity	Consister	Description
Tc (min)	Length		ope	Velocity	Capacity	Description
(min)	(feet		t/ft)	(ft/sec)	(cfs)	
1.9	100	0.0	100	0.86		Sheet Flow,
						Smooth surfaces $n = 0.011 P2 = 2.20"$
1.6	200	0.0	100	2.03		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
3.5	300	Tot	al, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 2D: DA #2D

Runoff = 93.00 cfs @ 11.96 hrs, Volume= 5.277 af, Depth= 3.64"

Area	(ac)	CN	Desc	cription		
0	.000	74	>75%	6 Grass co	over, Good,	, HSG C
0	.118	80	>75%	6 Grass co	over, Good,	, HSG D
10	.554	98		ed parking,		
-	.746	98		ed parking,		
0	.000	96		el surface		
0	.000	96		el surface		
0	.000	77	Woo	ds, Good,	HSG D	
17.	.418	98		ghted Aver		
-	.118		0.68	% Perviou	s Area	
17.	.300		99.3	2% Imperv	∕ious Area	
Tc	Lengt		Slope	Velocity	Capacity	Description
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
1.9	9	0 8	.0100	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.7	44	-6		4.50		Direct Entry, Pipe Flow
3.6	54	4 T	otal, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Pond 1P: Chambers

Page 45

Inflow	=	23.00 cfs @	11.96 hrs, Volume=	0.176 af
Outflow	=	10.78 cfs @	12.02 hrs, Volume=	0.175 af, Atten= 53%, Lag= 3.3 min
Primary	=	10.78 cfs @	12.02 hrs, Volume=	0.175 af

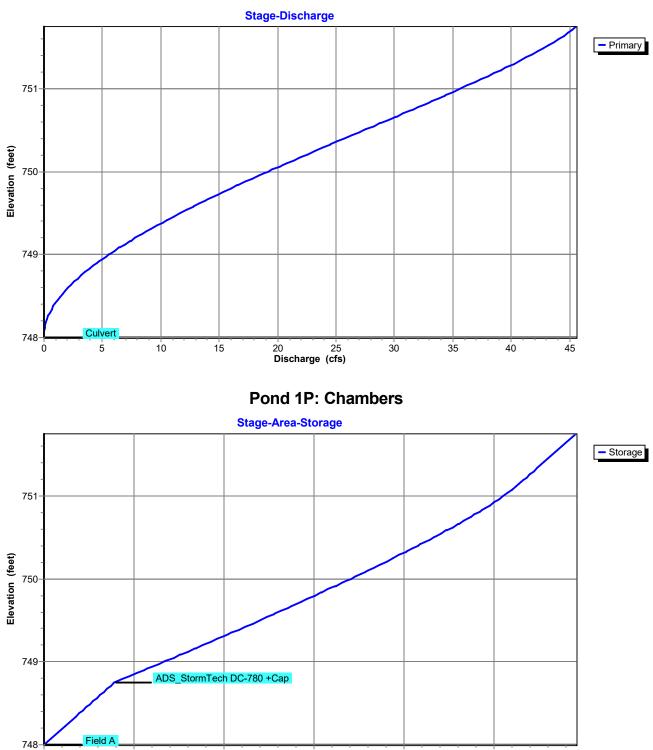
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 749.44' @ 12.02 hrs Surf.Area= 5,210 sf Storage= 4,543 cf

Plug-Flow detention time= 16.3 min calculated for 0.175 af (100% of inflow) Center-of-Mass det. time= 16.0 min (733.9 - 717.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	748.00'	5,151 cf	58.50'W x 89.06'L x 3.75'H Field A
			19,537 cf Overall - 6,658 cf Embedded = 12,878 cf x 40.0% Voids
#2A	748.75'	6,658 cf	ADS_StormTech DC-780 +Cap x 144 Inside #1
			Effective Size= 45.4"W x 30.0"H => 6.49 sf x 7.12'L = 46.2 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			144 Chambers in 12 Rows
		11,810 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	748.00'	36.0" Round Culvert L= 165.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 748.00' / 747.35' S= 0.0039 '/' Cc= 0.900 n= 0.012, Flow Area= 7.07 sf


Proposed Conditions IITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

2,000

Ó

4,000

Proposed Conditions - II *Type II 24-hr 25-yr Rainfall=3.87"* Printed 9/29/2022 <u>S LLC Page 46</u>

6,000

Storage (cubic-feet)

8,000

10,000

Pond 1P: Chambers

Proposed Conditions IITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

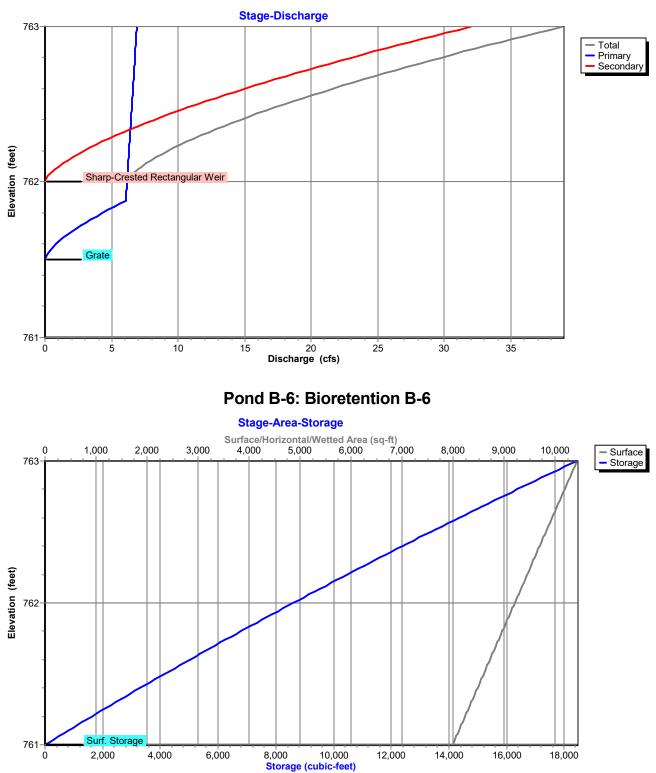
Proposed Conditions - II Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 47

Stage-Discharge for Pond 1P: Chambers

	Duine a ma	I =				- 1	
Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
748.00	0.00	749.02	5.77	750.04	19.80	751.06	36.60
748.02	0.00	749.04	5.99	750.06	20.12	751.08	36.91
748.04	0.01	749.06	6.20	750.08	20.44	751.10	37.22
748.06	0.02	749.08	6.42	750.10	20.76	751.12	37.53
748.08	0.03	749.10	6.65	750.12	21.09	751.14	37.84
748.10	0.05	749.12	6.87	750.14	21.41	751.16	38.14
748.12	0.07	749.14	7.10	750.16	21.74	751.18	38.45
748.14	0.10	749.16	7.33	750.18	22.07	751.20	38.75
748.16	0.13	749.18	7.57	750.20	22.40	751.22	39.05
748.18	0.17	749.20	7.81	750.22	22.73	751.24	39.34
748.20	0.22	749.22	8.05	750.24	23.05	751.26	39.63
748.22	0.26	749.24	8.29	750.26	23.39	751.28	39.92
748.24	0.32	749.26	8.53	750.28	23.72	751.30	40.21
748.26	0.37	749.28	8.78	750.30	24.05	751.32	40.50
748.28	0.44	749.30	9.03	750.32	24.38	751.34	40.78
748.30	0.50	749.32	9.29	750.34	24.71	751.36	41.06
748.32	0.58	749.34	9.54	750.36	25.05	751.38	41.33
748.34	0.65	749.36	9.80	750.38	25.38	751.40	41.60
748.36	0.74	749.38	10.06	750.40	25.71	751.42	41.87
748.38	0.82	749.40	10.33	750.42	26.05	751.44	42.13
748.40	0.91	749.42	10.59	750.44	26.38	751.46	42.39
748.42	1.01	749.44	10.86	750.46	26.72	751.48	42.65
748.44	1.11	749.46	11.13	750.48	27.05	751.50	42.90
748.46	1.21	749.48	11.40	750.50	27.39	751.52	43.14
748.48	1.32	749.50	11.68	750.52	27.72	751.54	43.38
748.50	1.44	749.52	11.95	750.54	28.06	751.56	43.62
748.52	1.55	749.54	12.23	750.56	28.39	751.58	43.85
748.54	1.68	749.56	12.51	750.58	28.73	751.60	44.07
748.56	1.80	749.58	12.80	750.60	29.06	751.62	44.29
748.58	1.93	749.60	13.08	750.62	29.40	751.64	44.50
748.60	2.07	749.62	13.37	750.64	29.73	751.66	44.71
748.62	2.21	749.64	13.66	750.66	30.07	751.68	44.91
748.64	2.35	749.66	13.95	750.68	30.40	751.70	45.10
748.66	2.50	749.68	14.24	750.70	30.74	751.72	45.28
748.68	2.65	749.70	14.54	750.72	31.07	751.74	45.45
748.70	2.80	749.72	14.84	750.74	31.40		
748.72	2.96	749.74	15.13	750.76	31.73		
748.74	3.12	749.76	15.43	750.78	32.06		
748.76	3.29	749.78	15.74	750.80	32.40		
748.78	3.46	749.80	16.04	750.82	32.73		
748.80	3.63	749.82	16.35	750.84	33.05		
748.82	3.81	749.84	16.65	750.86	33.38		
748.84	3.99	749.86	16.96	750.88	33.71		
748.86	4.18	749.88	17.27	750.90	34.04		
748.88	4.36	749.90	17.58	750.92	34.36		
748.90	4.56	749.92	17.89	750.94	34.68		
748.92	4.75	749.94	18.21	750.96	35.01		
748.94	4.95	749.96	18.52	750.98	35.33		
748.96	5.15	749.98	18.84	751.00	35.65		
748.98	5.35	750.00	19.16	751.02	35.97		
749.00	5.56	750.02	19.48	751.04	36.28		
, 10.00	0.00		10.40	101.04	00.20		
		•		•			

Proposed Conditions IIType II 2Prepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1P: Chambers


Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
748.00	0	750.55	8,820
748.05	104	750.60	8,989
748.10	208	750.65	9,154
748.15	313	750.70	9,317
748.20	417	750.75	9,476
748.25	521	750.80	9,631
748.30	625	750.85	9,782
748.35	729	750.90	9,927
748.40	834	750.95	10,067
748.45	938	751.00	10,198
748.50	1,042	751.05	10,322
748.55	1,146	751.10	10,440
748.60	1,250	751.15	10,552
748.65	1,355	751.20	10,662
748.70	1,459	751.25	10,768
748.75	1,563	751.30	10,872
748.80	1,783	751.35	10,976
748.85	2,003	751.40	11,080
748.90	2,223	751.45	11,185
748.95	2,441	751.50	11,289
749.00	2,659	751.55	11,393
749.05	2,876	751.60	11,497
749.10	3,092	751.65	11,601
749.15	3,308	751.70	11,706
749.20	3,522	751.75	11,810
749.25	3,736		
749.30	3,949		
749.35	4,161		
749.40	4,371		
749.45	4,581		
749.50	4,790		
749.55	4,997		
749.60	5,204		
749.65	5,408		
749.70	5,612		
749.75	5,814		
749.80	6,015		
749.85	6,215		
749.90	6,413		
749.95	6,610		
750.00	6,805		
750.05	6,998		
750.10	7,190		
750.15	7,380		
750.20	7,568		
750.25	7,753		
750.30	7,937		
750.35 750.40	8,119		
	8,298 8,475		
750.45	8,475 8,640		
750.50	8,649		
		I	

Summary for Pond B-6: Bioretention B-6

Inflow A Inflow Outflow Primary Seconda	= 15.55 = 10.36 = 6.36	cfs @ 11.9 cfs @ 12.0 cfs @ 12.0	3% Impervious, 96 hrs, Volume 04 hrs, Volume 04 hrs, Volume 04 hrs, Volume	e= 0.8 e= 0.1 e= 0.1	847 af	for 25-yre [.] ten= 33%, La	
	by Dyn-Stor-Ind ev= 762.25' @ 1						
	ow detention time of-Mass det. time Invert	e= 54.8 min		2)	% of inflow	/)	
<u>volume</u> #1	761.00'		cf Surf. Stor		tic) Listed	below (Recal	c)
<i>"</i>	701.00	10,440		uge (i risina			
Elevatio	on Surf.A	\rea	Inc.Store	Cum.Store	;		
(fee	et) (se	q-ft) (c	cubic-feet)	(cubic-feet)	<u>)</u>		
761.0	00 8,	,000	0	0)		
763.0)0 10,	,440	18,440	18,440)		
Device	Routing	Invert (Outlet Devices				
#1	Primary		12.0" Round C				
			_= 100.0' CPF				
			nlet / Outlet Inv			S= 0.0100 '/'	Cc= 0.900
# 0	Davias 1		n = 0.012, Flow				
#2	Device 1		24.0" x 24.0" H				
#3	Secondary		Limited to weir flow at low heads 10.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
			-				
Primary OutFlow Max=6.35 cfs @ 12.04 hrs HW=762.24' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 6.35 cfs @ 8.09 fps) 2=Grate (Passes 6.35 cfs of 16.59 cfs potential flow)							

Secondary OutFlow Max=3.88 cfs @ 12.04 hrs HW=762.24' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Weir Controls 3.88 cfs @ 1.61 fps)

Proposed Conditions II

Pond B-6: Bioretention B-6

Proposed Conditions IIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - II Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 51

Stage-Discharge for Pond B-6: Bioretention B-6

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
761.00	0.00	0.00	0.00	762.02	6.28	6.18	0.09
761.02	0.00	0.00	0.00	762.04	6.46	6.20	0.26
761.04	0.00	0.00	0.00	762.06	6.70	6.22	0.48
761.06	0.00	0.00	0.00	762.08	6.97	6.23	0.74
761.08	0.00	0.00	0.00	762.10	7.28	6.25	1.03
761.10	0.00	0.00	0.00	762.12	7.62	6.26	1.36
761.12	0.00	0.00	0.00	762.14	7.98	6.28	1.71
761.14	0.00	0.00	0.00	762.16	8.38	6.29	2.09
761.16	0.00	0.00	0.00	762.18	8.79	6.31	2.49
761.18	0.00	0.00	0.00	762.20	9.23	6.32	2.91
761.20	0.00	0.00	0.00	762.22	9.70	6.34	3.36
761.22	0.00	0.00	0.00	762.24	10.18	6.35	3.83
761.24	0.00	0.00	0.00	762.26	10.68	6.37	4.31
761.26	0.00	0.00	0.00	762.28	11.20	6.38	4.82
761.28	0.00	0.00	0.00	762.30	11.74	6.40	5.34
761.30	0.00	0.00	0.00	762.32	12.29	6.41	5.88
761.32	0.00	0.00	0.00	762.34	12.86	6.43	6.44
761.34	0.00	0.00	0.00	762.36	13.45	6.44	7.01
761.36	0.00	0.00	0.00	762.38	14.06	6.46	7.60
761.38	0.00	0.00	0.00	762.40	14.68	6.47	8.21
761.40	0.00	0.00	0.00	762.42	15.31	6.48	8.83
761.42	0.00	0.00	0.00	762.44	15.96	6.50	9.46
761.44	0.00	0.00	0.00	762.46	16.62	6.51	10.11
761.46	0.00	0.00	0.00	762.48	17.30	6.53	10.77
761.48	0.00	0.00	0.00	762.50	17.99	6.54	11.45
761.50	0.00	0.00	0.00	762.52	18.69	6.56	12.13
761.52	0.07	0.07	0.00	762.54	19.41	6.57	12.84
761.54	0.21	0.21	0.00	762.56	20.14	6.59	13.55
761.56	0.38	0.38	0.00	762.58	20.88	6.60	14.28
761.58	0.59	0.59	0.00	762.60	21.63	6.62	15.02
761.60	0.83	0.83	0.00	762.62	22.40	6.63	15.77
761.62	1.09	1.09	0.00	762.64	23.17	6.64	16.53
761.64	1.37	1.37	0.00	762.66	23.96	6.66	17.30
761.66	1.67	1.67	0.00	762.68	24.76	6.67	18.09
761.68	2.00	2.00	0.00	762.70	25.57	6.69	18.88
761.70	2.34	2.34	0.00	762.72	26.39	6.70	19.69
761.72	2.70	2.70	0.00	762.74	27.22	6.72	20.51
761.74	3.08	3.08	0.00	762.76	28.07	6.73	21.34
761.76	3.47	3.47	0.00	762.78	28.92	6.74	22.17
761.78	3.88	3.88	0.00	762.80	29.78	6.76	23.02
761.80	4.30	4.30	0.00	762.82	30.65	6.77	23.88
761.82	4.74	4.74	0.00	762.84	31.54	6.79	24.75
761.84	5.19	5.19	0.00	762.86	32.43	6.80	25.63
761.86	5.65	5.65	0.00	762.88 762.90	33.33 34.25	6.81	26.52
761.88	6.08	6.08	0.00			6.83	27.42 28.32
761.90 761.92	6.09	6.09	0.00	762.92	35.17	6.84	
761.92	6.11 6.12	6.11 6.12	0.00 0.00	762.94 762.96	36.10 37.04	6.86 6.87	29.24 30.17
761.94	6.12	6.12 6.14	0.00	762.96	37.04 37.99	6.88	30.17 31.10
761.90	6.14	6.14 6.15	0.00	763.00	37.99 38.94	6.90	31.10 32.05
762.00	6.17	6.17	0.00	100.00	50.34	0.00	52.05
102.00	0.17	0.17	0.00				
				•			

Proposed Conditions IITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-6: Bioretention B-6

Floyetion	Surface	Storage	Flovetion	Surface	Storogo
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (foot)	Surface	Storage (cubic-feet)
761.00			(feet)	(sq-ft)	
	8,000	0 160	762.02 762.04	9,244	8,795
761.02 761.04	8,024			9,269	8,980
	8,049	321 482	762.06 762.08	9,293	9,165 9,352
761.06	8,073			9,318	
761.08	8,098	644	762.10	9,342	9,538
761.10 761.12	8,122	806	762.12	9,366	9,725
	8,146	969	762.14	9,391	9,913
761.14	8,171	1,132 1,296	762.16	9,415	10,101
761.16 761.18	8,195 8,220	,	762.18 762.20	9,440	10,289
761.20	8,244	1,460 1,624	762.20	9,464 9,488	10,478
761.20		1,624	762.22	9,488	10,668 10,858
761.22	8,268 8,293	1,790 1,955	762.24	9,513	
761.24	8,317	2,121	762.28	9,562	11,048 11,239
761.28	8,342	2,121	762.30	9,586	11,431
761.30	8,366	2,200	762.30	9,610	11,623
761.30	8,390		762.32	9,635	
761.32	8,415	2,622 2,791	762.34	9,659	11,815 12,008
761.34	8,439	2,959	762.38	9,684	12,000
761.38	8,464	3,128	762.40	9,708	12,202
761.40	8,488	3,298	762.40	9,708	12,590
761.40	8,512	3,468	762.42	9,752	12,590
761.42	8,537	3,638	762.46	9,781	12,980
761.46	8,561	3,809	762.48	9,806	13,176
761.48	8,586	3,981	762.50	9,830	13,373
761.50	8,610	4,153	762.52	9,854	13,569
761.50	8,634	4,325	762.54	9,879	13,767
761.54	8,659	4,498	762.56	9,903	13,964
761.54	8,683	4,671	762.58	9,928	14,163
761.58	8,708	4,845	762.60	9,952	14,362
761.60	8,732	5,020	762.62	9,976	14,561
761.62	8,756	5,194	762.64	10,001	14,761
761.64	8,781	5,370	762.66	10,025	14,961
761.66	8,805	5,546	762.68	10,050	15,162
761.68	8,830	5,722	762.70	10,074	15,363
761.70	8,854	5,899	762.72	10,098	15,565
761.72	8,878	6,076	762.74	10,123	15,767
761.74	8,903	6,254	762.76	10,147	15,970
761.76	8,927	6,432	762.78	10,172	16,173
761.78	8,952	6,611	762.80	10,196	16,376
761.80	8,976	6,790	762.82	10,220	16,581
761.82	9,000	6,970	762.84	10,245	16,785
761.84	9,025	7,150	762.86	10,269	16,990
761.86	9,049	7,331	762.88	10,294	17,196
761.88	9,074	7,512	762.90	10,318	17,402
761.90	9,098	7,694	762.92	10,342	17,609
761.92	9,122	7,876	762.94	10,367	17,816
761.94	9,147	8,059	762.96	10,391	18,023
761.96	9,171	8,242	762.98	10,416	18,231
761.98	9,196	8,426	763.00	10,440	18,440
762.00	9,220	8,610			

Summary for Link 2AR: 2A Reach

 Inflow Area =
 43.007 ac, 86.82% Impervious, Inflow Depth =
 3.38" for 25-yr event

 Inflow =
 147.81 cfs @
 12.11 hrs, Volume=
 12.130 af

 Primary =
 145.94 cfs @
 12.23 hrs, Volume=
 12.130 af, Atten= 1%, Lag= 6.9 min

Primary outflow = Inflow delayed by 6.9 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2AT: DA 2A Total

Inflow Are	a =	43.007 ac, 86.82% Impervious, Inflow Depth = 3.38" for 25-yr event
Inflow	=	147.81 cfs @ 12.11 hrs, Volume= 12.130 af
Primary	=	147.81 cfs @ 12.11 hrs, Volume= 12.130 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BP: Bypass

Inflow Area =	17.418 ac, 99.32% Impervious, Inflow D	epth = 3.64" for 25-yr event
Inflow =	93.00 cfs @ 11.96 hrs, Volume=	5.277 af
Primary =	70.00 cfs @ 11.90 hrs, Volume=	5.101 af, Atten= 25%, Lag= 0.0 min
Secondary =	23.00 cfs @ 11.96 hrs, Volume=	0.176 af

Primary outflow = Inflow below 70.00 cfs, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BR: 2BR

Inflow Are	a =	11.872 ac,100.00% Impervious, Inflow Depth = 3.64" for 25-yr event
Inflow	=	63.39 cfs @ 11.96 hrs, Volume= 3.597 af
Primary	=	61.55 cfs @ 12.09 hrs, Volume= 3.597 af, Atten= 3%, Lag= 8.0 min

Primary outflow = Inflow delayed by 8.0 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2DT: DA 2D Total

Inflow Are	a =	17.418 ac, 99.32% Impervious, Inflow Depth = 3.64" for 25-yr event
Inflow	=	81.21 cfs @ 11.99 hrs, Volume= 5.277 af
Primary	=	81.21 cfs @ 11.99 hrs, Volume= 5.277 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP #2 - Smokes Crk

Inflow Are	a =	83.814 ac, 88.53% Impervious, Inflow Depth = 3.40" for 25-yr event
Inflow	=	236.58 cfs @ 12.02 hrs, Volume= 23.780 af
Primary	=	236.58 cfs @ 12.02 hrs, Volume= 23.780 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 2A-I: DA #2A-I

Runoff = 192.64 cfs @ 12.12 hrs, Volume= 16.014 af, Depth= 4.80"

Area	(ac) (N Des	cription		
0.	883	74 >75	% Grass c	over, Good	, HSG C
3.	754	80 >75	% Grass c	over, Good	, HSG D
5.	748	98 Pav	ed parking	, HSG C	
29.	010		ed parking		
			vel surface	,	
			vel surface	,	
0.	000	77 Woo	ods, Good,	HSG D	
			ghted Aver	•	
	269		6% Pervio		
34.	758	86.8	4% Imper	∕ious Area	
-		01		0	
Tc	Length	•	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.9	98	0.0100	0.86		Sheet Flow,
40 7	05	0.0450	0.00		Smooth surfaces n= 0.011 P2= 2.20"
13.7	65	0.0150	0.08		Sheet Flow,
0.0	00	0.0400	4.04		Grass: Dense n= 0.240 P2= 2.20"
0.8	80	0.0100	1.61		Shallow Concentrated Flow,
0.4	220	0.0150	2 40		Unpaved Kv= 16.1 fps
2.1	320	0.0150	2.49		Shallow Concentrated Flow,
1.7	446		4.50		Paved Kv= 20.3 fps Direct Entry, Pipe Flow
			4.50		
20.2	1,009	Total			

Summary for Subcatchment 2A-II: DA #2A-II

Runoff = 21.46 cfs @ 11.96 hrs, Volume= 1.192 af, Depth= 4.80"

Area	(ac)	CN	Desc	ription					
0.	000	74	>75%	6 Grass co	over, Good,	, HSG C			
0.	400	80	>75%	6 Grass co	over, Good,	, HSG D			
0.	000	98		d parking,					
2.	580	98		aved parking, HSG D					
0.	000	96	Grav	el surface	, HSG C				
	000	96		el surface	,				
0.	000	77	Woo	ds, Good,	HSG D				
2.	980	96	Weig	phted Aver	age				
0.	400		13.42	2% Pervio	us Area				
2.	580		86.58	3% Imperv	vious Area				
Tc	Length		lope	Velocity	Capacity	Description			
(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)				
1.6	100	0.0)150	1.02		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 2.20"			
3.0	450	0.0)150	2.49		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
4.6	550) To	tal, Ir	ncreased t	o minimum	Tc = 6.0 min			

Summary for Subcatchment 2B: DA #2B

Runoff = 86.65 cfs @ 11.96 hrs, Volume= 4.979 af, Depth> 5.03"

Area	(ac) C	N Des	cription		
0.	000	74 >75	% Grass c	over, Good	, HSG C
0.	000	80 >75	% Grass c	over, Good	, HSG D
2.	682		ed parking		
9.	190		ed parking		
0.	000	96 Gra	vel surface	e, HSG C	
0.	000		vel surface	,	
0.	000	77 Wo	ods, Good,	HSG D	
11.	872	98 We	ighted Ave	rage	
11.	872	100	.00% Impe	rvious Area	à
_					
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.9	100	0.0100	0.86		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.20"
1.6	200	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
3.5	300	Total,	Increased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 2C: DA #2C

Runoff = 77.89 cfs @ 11.96 hrs, Volume= 4.074 af, Depth= 4.24"

Area	(ac) (CN I	Desc	cription		
0.	913	74 >	>75%	6 Grass co	over, Good	, HSG C
2.	316				over, Good	, HSG D
1.	729			ed parking		
	964			ed parking		
	000			el surface		
	000			el surface		
0.	595	77 \	Woo	ds, Good,	HSG D	
11.	517	91 \	Weig	ghted Aver	age	
3.	824		33.20	0% Pervio	us Area	
7.	693	6	66.80	0% Imperv	vious Area	
_					- ··	
Tc	Length		ope	Velocity	Capacity	Description
(min)	(feet)) (f	t/ft)	(ft/sec)	(cfs)	
1.9	100	0.01	100	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.6	200	0.01	100	2.03		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
3.5	300) Tota	al, Ir	ncreased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment 2D: DA #2D

Runoff = 127.13 cfs @ 11.96 hrs, Volume= 7.305 af, Depth> 5.03"

Area	(ac)	CN	Desc	cription		
0	.000	74	>75%	6 Grass co	over, Good,	HSG C
0	.118	80	>75%	6 Grass co	over, Good,	, HSG D
10	.554	98		ed parking,		
6	.746	98	Pave	ed parking,	HSG D	
0	.000	96	Grav	el surface	, HSG C	
0	.000	96	Grav	el surface	, HSG D	
0	.000	77	Woo	ds, Good,	HSG D	
17	.418	98	Weig	ghted Aver	age	
0	.118		0.68	% Perviou	s Area	
17	.300		99.3	2% Imperv	vious Area	
Tc	Leng		Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
1.9	ç	0 8	.0100	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
1.7	44	6		4.50		Direct Entry, Pipe Flow
3.6	54	4 T	otal, Ir	ncreased t	o minimum	Tc = 6.0 min

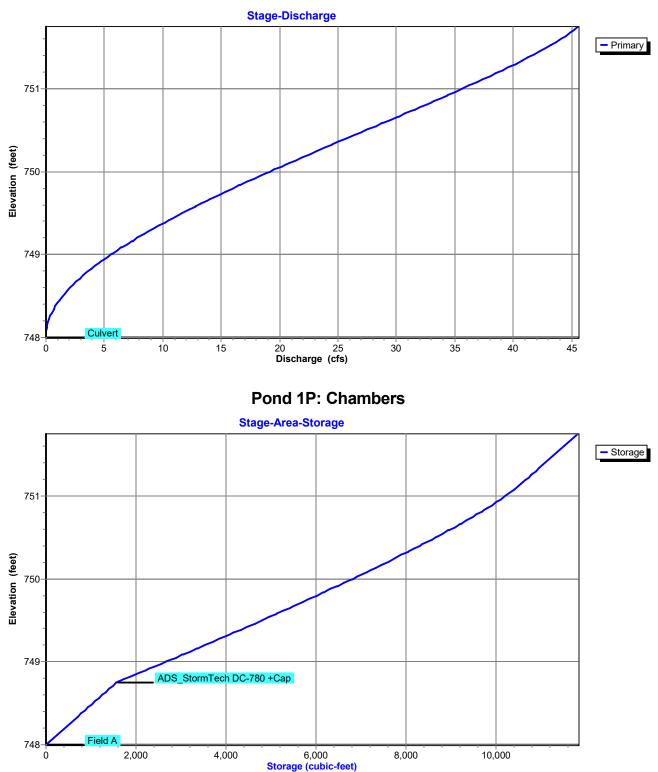
Summary for Pond 1P: Chambers

Page 64

Inflow	=	57.13 cfs @	11.96 hrs, Volume=	0.592 af
Outflow	=	43.36 cfs @	12.00 hrs, Volume=	0.592 af, Atten= 24%, Lag= 2.5 min
Primary	=	43.36 cfs @	12.00 hrs, Volume=	0.592 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 751.54' @ 12.00 hrs Surf.Area= 5,210 sf Storage= 11,362 cf

Plug-Flow detention time= 8.7 min calculated for 0.592 af (100% of inflow) Center-of-Mass det. time= 8.1 min (725.4 - 717.2)


Volume	Invert	Avail.Storage	Storage Description
#1A	748.00'	5,151 cf	58.50'W x 89.06'L x 3.75'H Field A
			19,537 cf Overall - 6,658 cf Embedded = 12,878 cf x 40.0% Voids
#2A	748.75'	6,658 cf	ADS_StormTech DC-780 +Cap x 144 Inside #1
			Effective Size= 45.4"W x 30.0"H => 6.49 sf x 7.12L = 46.2 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			144 Chambers in 12 Rows
		11,810 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	748.00'	36.0" Round Culvert L= 165.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 748.00' / 747.35' S= 0.0039 '/' Cc= 0.900 n= 0.012, Flow Area= 7.07 sf

Proposed Conditions IITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - II Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 s LLC Page 65

Pond 1P: Chambers

Proposed Conditions IIType IIPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - II Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 66

Stage-Discharge for Pond 1P: Chambers

Elevation	Primary	Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
748.00	0.00	749.02	5.77	750.04	19.80	751.06	36.60
748.02	0.00	749.04	5.99	750.06	20.12	751.08	36.91
748.04	0.01	749.06	6.20	750.08	20.44	751.10	37.22
748.06	0.02	749.08	6.42	750.10	20.76	751.12	37.53
748.08	0.03	749.10	6.65	750.12	21.09	751.14	37.84
748.10	0.05	749.12	6.87	750.14	21.41	751.16	38.14
748.12	0.07	749.14	7.10	750.16	21.74	751.18	38.45
748.14	0.10	749.16	7.33	750.18	22.07	751.20	38.75
748.16	0.13	749.18	7.57	750.20	22.40	751.22	39.05
748.18	0.17	749.20	7.81	750.22	22.73	751.24	39.34
748.20	0.22	749.22	8.05	750.24	23.05	751.26	39.63
748.22	0.26	749.24	8.29	750.26	23.39	751.28	39.92
748.24	0.32	749.26	8.53	750.28	23.72	751.30	40.21
748.26	0.37	749.28	8.78	750.30	24.05	751.32	40.50
748.28	0.44	749.30	9.03	750.32	24.38	751.34	40.78
748.30	0.50	749.32	9.29	750.34	24.71	751.36	41.06
748.32	0.58	749.34	9.54	750.36	25.05	751.38	41.33
748.34	0.65	749.36	9.80	750.38	25.38	751.40	41.60
748.36	0.74	749.38	10.06	750.40	25.71	751.42	41.87
748.38	0.82	749.40	10.33	750.42	26.05	751.44	42.13
748.40	0.91	749.42	10.59	750.44	26.38	751.46	42.39
748.42	1.01	749.44	10.86	750.46	26.72	751.48	42.65
748.44	1.11	749.46	11.13	750.48	27.05	751.50	42.90
748.46	1.21	749.48	11.40	750.50	27.39	751.52	43.14
748.48	1.32	749.50	11.68	750.52	27.72	751.54	43.38
748.50	1.44	749.52	11.95	750.54	28.06	751.56	43.62
748.52	1.55	749.54	12.23	750.56	28.39	751.58	43.85
748.54	1.68	749.56	12.51	750.58	28.73	751.60	44.07
748.56	1.80	749.58	12.80	750.60	29.06	751.62	44.29
748.58	1.93	749.60	13.08	750.62	29.40	751.64	44.50
748.60	2.07	749.62	13.37	750.64	29.73	751.66	44.71
748.62	2.21	749.64	13.66	750.66	30.07	751.68	44.91
748.64	2.35	749.66	13.95	750.68	30.40	751.70	45.10
748.66	2.50	749.68	14.24	750.70	30.74	751.72	45.28
748.68	2.65	749.70	14.54	750.72	31.07	751.74	45.45
748.70	2.80	749.72	14.84	750.74	31.40		
748.72	2.96	749.74	15.13	750.76	31.73		
748.74	3.12	749.76	15.43	750.78	32.06		
748.76	3.29	749.78	15.74	750.80	32.40		
748.78	3.46	749.80	16.04	750.82	32.73		
748.80	3.63	749.82	16.35	750.84	33.05		
748.82	3.81	749.84	16.65	750.86	33.38		
748.84	3.99	749.86	16.96	750.88	33.71		
748.86	4.18	749.88	17.27	750.90	34.04		
748.88	4.36	749.90	17.58	750.92	34.36		
748.90	4.56	749.92	17.89	750.94	34.68		
748.92	4.75	749.94	18.21	750.96	35.01		
748.94	4.95	749.96	18.52	750.98	35.33		
748.96	5.15	749.98	18.84	751.00	35.65		
748.98	5.35	750.00	19.16	751.02	35.97		
749.00	5.56	750.02	19.48	751.04	36.28		

Proposed Conditions IITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

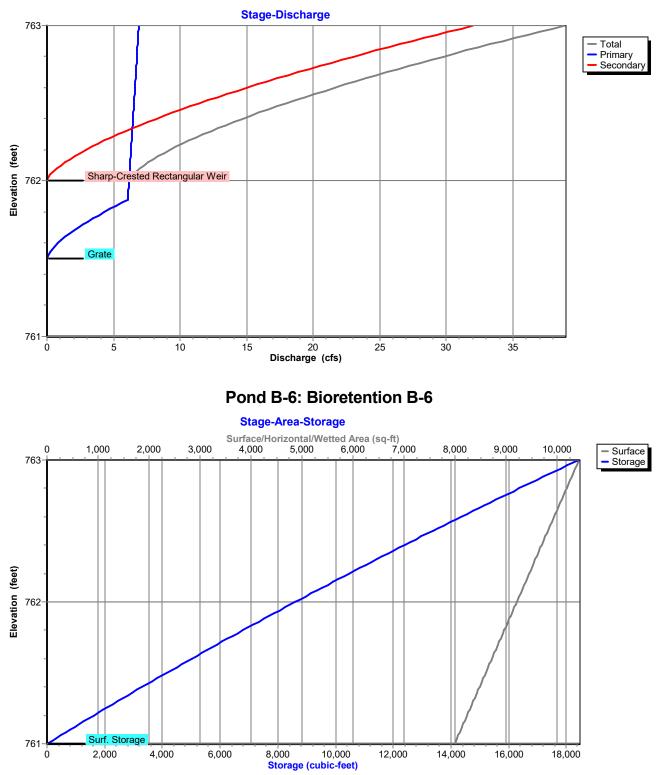
Proposed Conditions - II Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 67

Stage-Area-Storage for Pond 1P: Chambers

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
748.00	0	750.55	8,820
748.05	104	750.60	8,989
748.10	208	750.65	9,154
748.15	313	750.70	9,317
748.20	417	750.75	9,476
748.25	521	750.80	9,631
748.30	625	750.85	9,782
748.35	729	750.90	9,927
748.40	834	750.95	10,067
748.45	938	751.00	10,198
748.50	1,042	751.05	10,322
748.55	1,146	751.10	10,440
748.60	1,250	751.15	10,552
748.65	1,355	751.20	10,662
748.70	1,459	751.25	10,768
748.75	1,563	751.30	10,872
748.80	1,783	751.35	10,976
748.85	2,003	751.40	11,080
748.90	2,223	751.45	11,185
748.95	2,441	751.50	11,289
749.00	2,659	751.55	11,393
749.05	2,876	751.60	11,497
749.10	3,092	751.65	11,601
749.15	3,308	751.70	11,706
749.20	3,522	751.75	11,810
749.25	3,736		
749.30	3,949		
749.35	4,161		
749.40	4,371		
749.45	4,581		
749.50 749.55	4,790 4,997		
749.55	4,997 5,204		
749.65	5,408		
749.00	5,612		
749.75	5,814		
749.80	6,015		
749.85	6,215		
749.90	6,413		
749.95	6,610		
750.00	6,805		
750.05	6,998		
750.10	7,190		
750.15	7,380		
750.20	7,568		
750.25	7,753		
750.30	7,937		
750.35	8,119		
750.40	8,298		
750.45	8,475		
750.50	8,649		
	,		

Proposed Conditions - II

Page 68


Summary for Pond B-6: Bioretention B-6

Inflow Area = Inflow = Outflow = Primary = Secondary =	21.46 cfs @ 1 16.12 cfs @ 1 6.50 cfs @ 1	58% Impervious, Inflow Depth = 4.80" for 100-yr event1.96 hrs, Volume=1.192 af2.03 hrs, Volume=1.097 af, Atten= 25%, Lag= 4.0 min2.03 hrs, Volume=0.945 af2.03 hrs, Volume=0.152 af							
	Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 762.45' @ 12.03 hrs Surf.Area= 9,763 sf Storage= 12,838 cf								
Center-of-Mas	ention time= 93.0 m s det. time= 48.2 m	in calculated for 1.097 af (92% of inflow) in (805.5 - 757.4)							
Volume	Invert Avail.Sto	rage Storage Description							
#1 70	61.00' 18,44	40 cf Surf. Storage (Prismatic) Listed below (Recalc)							
Elevation	Surf.Area	Inc.Store Cum.Store							
(feet)	(sq-ft)	(cubic-feet) (cubic-feet)							
761.00	8,000	0 0							
763.00	10,440	18,440 18,440							
Device Rout	ing Invert	Outlet Devices							
#1 Prima	ary 758.00'	12.0" Round Culvert							
		L= 100.0' CPP, square edge headwall, Ke= 0.500							
		Inlet / Outlet Invert= 758.00' / 757.00' S= 0.0100 '/' Cc= 0.900							
	704 501	n= 0.012, Flow Area= 0.79 sf							
#2 Devi	ce 1 761.50'	24.0" x 24.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads							
#3 Seco	ondary 762.00'								
<i>"0</i> 0000	11ddry 702.00								
Primary OutFlow Max=6.49 cfs @ 12.03 hrs HW=762.43' TW=0.00' (Dynamic Tailwater) 1=Culvert (Barrel Controls 6.49 cfs @ 8.27 fps) 2=Grate (Passes 6.49 cfs of 18.60 cfs potential flow)									

Secondary OutFlow Max=9.24 cfs @ 12.03 hrs HW=762.43' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Weir Controls 9.24 cfs @ 2.15 fps)

Proposed Conditions II

Proposed Conditions - II Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 69

Pond B-6: Bioretention B-6

Proposed Conditions IIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - II Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 70

Stage-Discharge for Pond B-6: Bioretention B-6

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
761.00	0.00	0.00	0.00	762.02	6.28	6.18	0.09
761.02	0.00	0.00	0.00	762.04	6.46	6.20	0.26
761.04	0.00	0.00	0.00	762.06	6.70	6.22	0.48
761.06	0.00	0.00	0.00	762.08	6.97	6.23	0.74
761.08	0.00	0.00	0.00	762.10	7.28	6.25	1.03
761.10	0.00	0.00	0.00	762.12	7.62	6.26	1.36
761.12	0.00	0.00	0.00	762.14	7.98	6.28	1.71
761.14	0.00	0.00	0.00	762.16	8.38	6.29	2.09
761.16	0.00	0.00	0.00	762.18	8.79	6.31	2.49
761.18	0.00	0.00	0.00	762.20	9.23	6.32	2.91
761.20	0.00	0.00	0.00	762.22	9.70	6.34	3.36
761.22	0.00	0.00	0.00	762.24	10.18	6.35	3.83
761.24	0.00	0.00	0.00	762.26	10.68	6.37	4.31
761.26	0.00	0.00	0.00	762.28	11.20	6.38	4.82
761.28	0.00	0.00	0.00	762.30	11.74	6.40	5.34
761.30	0.00	0.00	0.00	762.32	12.29	6.41	5.88
761.32	0.00	0.00	0.00	762.34	12.86	6.43	6.44
761.34	0.00	0.00	0.00	762.36	13.45	6.44	7.01
761.36	0.00	0.00	0.00	762.38	14.06	6.46	7.60
761.38	0.00	0.00	0.00	762.40	14.68	6.47	8.21
761.40	0.00	0.00	0.00	762.42	15.31	6.48	8.83
761.42	0.00	0.00	0.00	762.44	15.96	6.50	9.46
761.44	0.00	0.00	0.00	762.46	16.62	6.51	10.11
761.46	0.00	0.00	0.00	762.48	17.30	6.53	10.77
761.48	0.00	0.00	0.00	762.50	17.99	6.54	11.45
761.50	0.00	0.00	0.00	762.52	18.69	6.56	12.13
761.52	0.07	0.07	0.00	762.54	19.41	6.57	12.84
761.54	0.21	0.21	0.00	762.56	20.14	6.59	13.55
761.56	0.38	0.38	0.00	762.58	20.88	6.60	14.28
761.58	0.59	0.59	0.00	762.60	21.63	6.62	15.02
761.60	0.83	0.83	0.00	762.62	22.40	6.63	15.77
761.62	1.09	1.09	0.00	762.64	23.17	6.64	16.53
761.64	1.37	1.37	0.00	762.66	23.96	6.66	17.30
761.66	1.67	1.67	0.00	762.68	24.76	6.67	18.09
761.68	2.00	2.00	0.00	762.70	25.57	6.69	18.88
761.70	2.34	2.34	0.00	762.72	26.39	6.70	19.69
761.72	2.70	2.70	0.00	762.74	27.22	6.72	20.51
761.74	3.08	3.08	0.00	762.76	28.07	6.73	21.34
761.76	3.47	3.47	0.00	762.78	28.92	6.74	22.17
761.78	3.88	3.88	0.00	762.80	29.78	6.76	23.02
761.80	4.30	4.30	0.00	762.82	30.65	6.77	23.88
761.82	4.74	4.74	0.00	762.84	31.54	6.79	24.75
761.84	5.19	5.19	0.00	762.86	32.43	6.80	25.63
761.86	5.65	5.65	0.00	762.88	33.33	6.81	26.52
761.88	6.08	6.08	0.00	762.90	34.25	6.83	27.42
761.90	6.09	6.09	0.00	762.92	35.17	6.84	28.32
761.92	6.11	6.11	0.00	762.94	36.10	6.86	29.24
761.94	6.12	6.12	0.00	762.96	37.04	6.87	30.17
761.96	6.14	6.14	0.00	762.98	37.99	6.88	31.10
761.98	6.15	6.15	0.00	763.00	38.94	6.90	32.05
762.00	6.17	6.17	0.00				
				l			

Proposed Conditions IITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-6: Bioretention B-6

Elevation	Surface	Storago	Elevation	Surface	Storage
(feet)	(sq-ft)	Storage (cubic-feet)	(feet)	(sq-ft)	Storage (cubic-feet)
761.00	8,000	0	762.02	9,244	8,795
761.00	8,000	160	762.02	9,244 9,269	8,980
761.02	8,049	321	762.04	9,209	9,165
761.04	8,073	482	762.08	9,293	9,352
761.08		644			
	8,098		762.10	9,342	9,538
761.10	8,122	806	762.12	9,366	9,725
761.12	8,146	969	762.14	9,391	9,913
761.14	8,171	1,132	762.16	9,415 9,440	10,101 10,289
761.16	8,195	1,296	762.18 762.20	,	,
761.18	8,220	1,460		9,464	10,478
761.20	8,244	1,624	762.22	9,488	10,668
761.22	8,268	1,790	762.24	9,513	10,858
761.24	8,293	1,955	762.26	9,537	11,048
761.26	8,317	2,121	762.28	9,562	11,239
761.28	8,342	2,288	762.30	9,586	11,431
761.30	8,366	2,455	762.32	9,610	11,623
761.32	8,390	2,622	762.34	9,635	11,815
761.34	8,415	2,791	762.36	9,659	12,008
761.36	8,439	2,959	762.38	9,684	12,202
761.38	8,464	3,128	762.40	9,708	12,396
761.40	8,488	3,298	762.42	9,732	12,590
761.42	8,512	3,468	762.44	9,757	12,785
761.44	8,537	3,638	762.46	9,781	12,980
761.46	8,561	3,809	762.48	9,806	13,176
761.48	8,586	3,981	762.50	9,830	13,373
761.50	8,610	4,153	762.52	9,854	13,569
761.52	8,634	4,325	762.54	9,879	13,767
761.54	8,659	4,498	762.56	9,903	13,964
761.56	8,683	4,671	762.58	9,928	14,163
761.58	8,708	4,845	762.60	9,952	14,362
761.60	8,732	5,020	762.62	9,976	14,561
761.62	8,756	5,194	762.64	10,001	14,761
761.64	8,781	5,370	762.66	10,025	14,961
761.66	8,805	5,546	762.68	10,050	15,162
761.68	8,830	5,722	762.70	10,074	15,363
761.70	8,854	5,899	762.72	10,098	15,565
761.72	8,878	6,076	762.74	10,123	15,767
761.74	8,903	6,254	762.76	10,147	15,970
761.76	8,927	6,432	762.78	10,172	16,173
761.78	8,952	6,611	762.80	10,196	16,376
761.80	8,976	6,790	762.82	10,220	16,581
761.82	9,000	6,970	762.84	10,245	16,785
761.84	9,025	7,150	762.86	10,269	16,990
761.86	9,049	7,331	762.88	10,294	17,196
761.88	9,074	7,512	762.90	10,318	17,402
761.90	9,098	7,694	762.92	10,342	17,609
761.92	9,122	7,876	762.94	10,367	17,816
761.94	9,147	8,059	762.96	10,391	18,023
761.96	9,171	8,242	762.98	10,416	18,231
761.98	9,196	8,426	763.00	10,440	18,440
762.00	9,220	8,610			

Summary for Link 2AR: 2A Reach

 Inflow Area =
 43.007 ac, 86.82% Impervious, Inflow Depth =
 4.77" for 100-yr event

 Inflow =
 204.68 cfs @
 12.11 hrs, Volume=
 17.111 af

 Primary =
 202.12 cfs @
 12.23 hrs, Volume=
 17.111 af, Atten= 1%, Lag= 6.9 min

Primary outflow = Inflow delayed by 6.9 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2AT: DA 2A Total

 Inflow Area =
 43.007 ac, 86.82% Impervious, Inflow Depth =
 4.77" for 100-yr event

 Inflow =
 204.68 cfs @
 12.11 hrs, Volume=
 17.111 af

 Primary =
 204.68 cfs @
 12.11 hrs, Volume=
 17.111 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BP: Bypass

Inflow Area =	17.418 ac, 99.32% Impervious, Inflow D	Depth > 5.03" for 100-yr event
Inflow =	127.13 cfs @ 11.96 hrs, Volume=	7.305 af
Primary =	70.00 cfs @ 11.85 hrs, Volume=	6.712 af, Atten= 45%, Lag= 0.0 min
Secondary =	57.13 cfs @ 11.96 hrs, Volume=	0.592 af

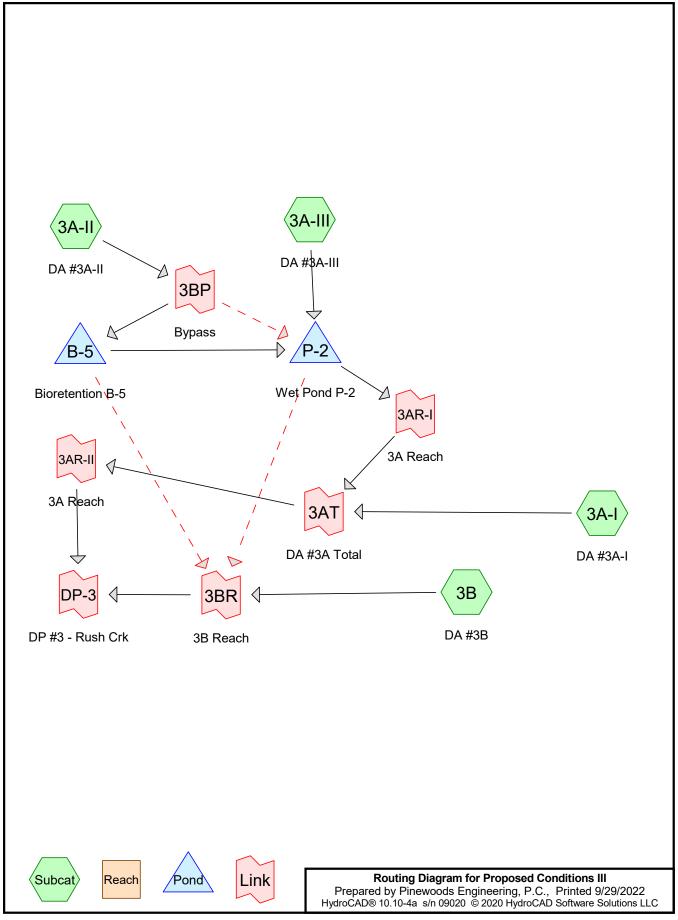
Primary outflow = Inflow below 70.00 cfs, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2BR: 2BR

Inflow Are	a =	11.872 ac,100.00% Impervious, Inflow Depth > 5.03" for 100-yr event
Inflow	=	86.65 cfs @ 11.96 hrs, Volume= 4.979 af
Primary	=	84.14 cfs @ 12.09 hrs, Volume= 4.979 af, Atten= 3%, Lag= 8.0 min

Primary outflow = Inflow delayed by 8.0 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 2DT: DA 2D Total


Inflow Are	a =	17.418 ac, 99.32% Impervious, Inflow Depth > 5.03" for 100-yr event
Inflow	=	113.36 cfs @ 12.00 hrs, Volume= 7.304 af
Primary	=	113.36 cfs @ 12.00 hrs, Volume= 7.304 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP #2 - Smokes Crk

Inflow Are	ea =	83.814 ac, 88.53% Impervious, Inflow Depth > 4.79" for 100-yr event
Inflow	=	335.55 cfs @ 12.03 hrs, Volume= 33.468 af
Primary	=	335.55 cfs @ 12.03 hrs, Volume= 33.468 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 3A-I: DA #3A-I

Runoff = 17.20 cfs @ 12.37 hrs, Volume= 2.043 af, Depth= 0.78"

Area	(ac) (CN De	scription		
0.	000	74 >7	5% Grass c	over, Good	, HSG C
19.	111	80 >7	5% Grass c	over, Good	, HSG D
0.	000	98 Pa	ved parking	, HSG C	
12.	223	98 Pa	ved parking	, HSG D	
0.	000	96 Gr	avel surface	e, HSG C	
0.	000	96 Gr	avel surface	e, HSG D	
0.	000	77 W	ods, Good,	, HSG D	
31.	334	87 W	eighted Ave	rage	
19.	111	60	.99% Pervic	ous Area	
12.	223	39	.01% Imper	vious Area	
Тс	Length			• •	Description
(min)	(feet)	(ft/f) (ft/sec)	(cfs)	
31.4	150	0.010	0.08		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.20"
3.9	380	0.010) 1.61		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
1.2	146	0.010	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
2.9	774		4.50		Direct Entry, Pipe Flow
39.4	1,450	Total			

Summary for Subcatchment 3A-II: DA #3A-II

Runoff = 31.10 cfs @ 11.97 hrs, Volume= 1.553 af, Depth= 1.25"

Area	(ac)	CN	Desc	ription		
0.	000	74 :	>75%	6 Grass co	over, Good	, HSG C
3.	345	80	>75%	6 Grass co	over, Good	, HSG D
0.	000	98	Pave	d parking,	, HSG C	
11.	593			d parking,		
0.	000	96	Grav	el surface	, HSG C	
	000			el surface		
0.	000	77 \	Woo	ds, Good,	HSG D	
14.	938	94	Weig	phted Aver	age	
3.	345	:	22.39	9% Pervio	us Area	
11.	593	-	77.6′	1% Imperv	ious Area	
Тс	Length		ope	Velocity	Capacity	Description
(min)	(feet)) (f	t/ft)	(ft/sec)	(cfs)	
1.6	100	0.0	150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
0.7	100	0.0	150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
2.3	200) Tota	al, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 3A-III: DA #3A-III

Runoff = 2.33 cfs @ 11.98 hrs, Volume= 0.113 af, Depth= 0.59"

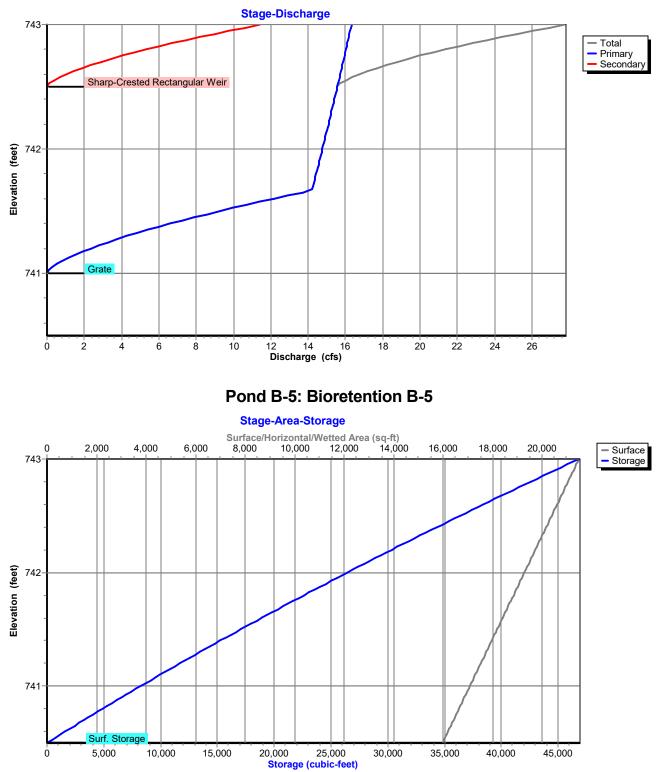
Area	(ac)	CN	Desc	cription		
0	.000	74	>75%	6 Grass co	over, Good,	HSG C
1	.918	80	>75%	6 Grass co	over, Good,	HSG D
0	.000	98		ed parking,		
0	.384	98		ed parking,		
	.000	96		el surface	,	
	.000	96		el surface	,	
0	.000	77	Woo	ds, Good,	HSG D	
2	.302	83	Weig	ghted Aver	age	
1	.918		83.3	2% Pervio	us Area	
0	.384		16.6	8% Imperv	vious Area	
Tc	Leng		Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
1.6	10	0 0.	0150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
3.9	86	60 O.	0330	3.69		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
5.5	96	60 To	otal, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 3B: DA #3B

Runoff = 4.91 cfs @ 12.15 hrs, Volume= 0.391 af, Depth= 0.63"

Area	(ac) (CN D	escription		
0.	000	74 >7	75% Grass c	over, Good	, HSG C
5.	920	80 >7	75% Grass c	over, Good	, HSG D
0.			aved parking		
			aved parking	,	
0.	000		ravel surface	,	
			ravel surface	,	
0.	000	77 W	oods, Good	HSG D	
7.	407		eighted Ave		
-	975).67% Pervic		
1.	432	19	9.33% Imper	vious Area	
Tc (min)	Length (feet)	Slop (ft/t		Capacity (cfs)	Description
19.3	100	0.015	0.09		Sheet Flow,
1.1	130	0.015	60 1.97		Grass: Dense n= 0.240 P2= 2.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
20.4	230	Total			

Summary for Pond B-5: Bioretention B-5


Inflow A Inflow Outflow Primary Second	= 14.30 = 11.43 = 11.43	cfs @ 11. cfs @ 12. cfs @ 12.	1% Impervious 85 hrs, Volum 08 hrs, Volum 08 hrs, Volum 00 hrs, Volum	ie= ie= ie=	1.357 af	' for 1-yr ev tten= 20%, La		
	by Dyn-Stor-Ind ev= 741.58' @ 1							
	Plug-Flow detention time= 128.4 min calculated for 1.167 af (86% of inflow) Center-of-Mass det. time= 60.6 min (876.8 - 816.2)							
<u>volume</u> #1	Invert 740.50'		ge Storage [cf Surf. Sto			helow (Reca		
πı	740.00	40,000		age (i lisi				
Elevati	on Surf.A	∖rea	Inc.Store	Cum.St	ore			
(fee	et) (se	q-ft) (d	cubic-feet)	(cubic-fe	et)			
740.	50 15,	980	0		0			
743.	00 21,	490	46,838	46,8	338			
Device	Routing	Invert	Outlet Devices	5				
#1	Primary		18.0" Round					
			L= 170.0' CP					
			Inlet / Outlet In			S= 0.0059 '/'	Cc= 0.900	
			n= 0.012, Flov					
#2	Device 1		24.0" x 24.0" l					
#3	Secondary		Limited to weir			ar Mair 2 En	d Contraction(s)	
#3	Secondary	742.50	10.0 long Sha	inp-crested	Rectangula		u contraction(s)	
Primary OutFlow Max=11.31 cfs @ 12.08 hrs HW=741.57' TW=736.71' (Dynamic Tailwater) -1=Culvert (Passes 11.31 cfs of 14.05 cfs potential flow) -2=Grate (Weir Controls 11.31 cfs @ 2.47 fps)								

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=740.50' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Conditions III

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III *Type II 24-hr 1-yr Rainfall=1.84"* Printed 9/29/2022 Page 7

Pond B-5: Bioretention B-5

Proposed Conditions IIIType II 24-hPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 8

Stage-Discharge for Pond B-5: Bioretention B-5

Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)
740.50 740.55	0.00 0.00	0.00 0.00	0.00 0.00
740.55	0.00	0.00	0.00
740.65	0.00	0.00	0.00
740.70	0.00	0.00	0.00
740.75	0.00	0.00	0.00
740.80	0.00	0.00	0.00
740.85	0.00	0.00	0.00
740.90	0.00	0.00	0.00 0.00
740.95 741.00	0.00 0.00	0.00 0.00	0.00
741.05	0.29	0.29	0.00
741.10	0.83	0.83	0.00
741.15	1.52	1.52	0.00
741.20	2.34	2.34	0.00
741.25	3.27	3.27	0.00
741.30 741.35	4.30 5.42	4.30 5.42	0.00 0.00
741.33	6.62	6.62	0.00
741.45	7.90	7.90	0.00
741.50	9.25	9.25	0.00
741.55	10.67	10.67	0.00
741.60	12.16	12.16	0.00
741.65 741.70	13.71 14.27	13.71 14.27	0.00 0.00
741.75	14.35	14.35	0.00
741.80	14.44	14.44	0.00
741.85	14.52	14.52	0.00
741.90	14.60	14.60	0.00
741.95	14.69	14.69	0.00
742.00 742.05	14.77 14.85	14.77 14.85	0.00 0.00
742.00	14.03	14.03	0.00
742.15	15.01	15.01	0.00
742.20	15.09	15.09	0.00
742.25	15.17	15.17	0.00
742.30	15.25	15.25	0.00
742.35 742.40	15.33 15.41	15.33 15.41	0.00 0.00
742.40	15.49	15.49	0.00
742.50	15.57	15.57	0.00
742.55	16.01	15.65	0.37
742.60	16.75	15.72	1.03
742.65	17.69	15.80	1.89
742.70 742.75	18.79 20.02	15.88 15.95	2.91 4.07
742.75	20.02	16.03	5.34
742.85	22.83	16.10	6.72
742.90	24.38	16.18	8.21
742.95	26.04	16.25	9.78
743.00	27.77	16.33	11.45

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond B-5: Bioretention B-5

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
(feet) 740.50 740.55 740.60 740.65 740.70 740.75 740.80 740.85 740.90 740.95 741.00 741.05 741.00 741.25 741.20 741.25 741.30 741.25 741.30 741.35 741.40 741.45 741.55 741.60 741.55 741.60 741.55 741.60 741.55 741.60 741.55 741.60 741.55 741.60 741.55 741.80 741.85 741.90 742.05 742.00 742.05 742.10 742.25 742.30 742.35 742.40 742.45	(sq-ft) 15,980 16,090 16,200 16,311 16,421 16,531 16,641 16,751 16,862 16,972 17,082 17,192 17,302 17,413 17,523 17,633 17,743 17,853 17,633 17,743 17,853 17,964 18,074 18,184 18,294 18,404 18,515 18,625 18,735 18,845 18,955 19,066 19,176 19,286 19,396 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,507 20,168 20,278	(cubic-feet) 0 802 1,609 2,422 3,240 4,064 4,893 5,728 6,568 7,414 8,266 9,122 9,985 10,853 11,726 12,605 13,489 14,379 15,275 16,176 17,082 17,994 18,911 19,834 20,763 21,697 22,636 23,581 24,532 25,488 26,450 27,417 28,389 29,367 30,351 31,340 32,334 33,335 34,340 35,351
742.30	19,947	32,334
742.35	20,057	33,335
742.40	20,168	34,340
742.45	20,278	35,351
742.50	20,388	36,368
742.55	20,498	37,390
742.60	20,608	38,418
742.65	20,719	39,451
742.70	20,829	40,490
742.75	20,939	41,534
742.80	21,049	42,584
742.85	21,159	43,639
742.90	21,270	44,700
742.95	21,380	45,766
743.00	21,490	46,838

Proposed Conditions IIITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Pond P-2: Wet Pond P-2

Inflow Area =	17.240 ac, 69.47% Impervious, Inflow I	Depth = 1.03" for 1-yr event
Inflow =	28.72 cfs @ 11.98 hrs, Volume=	1.476 af
Outflow =	0.40 cfs @ 20.03 hrs, Volume=	1.384 af, Atten= 99%, Lag= 483.1 min
Primary =	0.40 cfs @ 20.03 hrs, Volume=	1.384 af
Secondary =	0.00 cfs $\overline{@}$ 1.00 hrs, Volume=	0.000 af

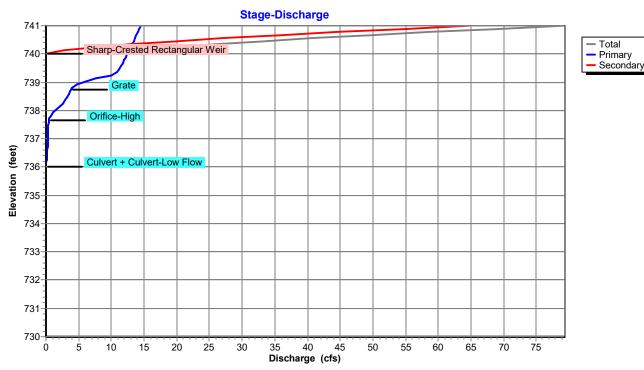
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 737.64' @ 20.03 hrs Surf.Area= 50,985 sf Storage= 47,253 cf

Plug-Flow detention time= 1,378.2 min calculated for 1.384 af (94% of inflow) Center-of-Mass det. time= 1,341.8 min (2,196.2 - 854.3)

Volume	Invert	Avail.Sto	orage	Storage Description	on			
#1	730.00'	730.00' 0 cf		Retention (Irregular) Listed below (Recalc)				
	700.001			46,278 cf Overall x 0.0% Voids				
#2	736.00'	177,8		Detention (Irregu		Recalc)		
		177,8	73 cf	Total Available Sto	orage			
Elevatio	on Surf	.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee	et) (sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
730.0	00	3,490	498.0	0	0	3,490		
734.5	50	8,488	612.0	26,131	26,131	13,865		
736.0	00 1	9,080	800.0	20,147	46,278	35,016		
Elevatio	on Surf	.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee		sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
736.0			957.0	0	0	25,870		
741.0		,	082.0	177,873	177,873	46,783		
		, ,			,	,		
Device	Routing	Invert	Outl	et Devices				
#1	Primary	736.00'		24.0" Round Culvert				
				20.0' CPP, end-se				
						= 0.0038 '/' Cc= 0.900		
	D · · · ·		n= 0.025 Corrugated metal, Flow Area= 3.14 sf					
#2	Device 1	738.75'		24.0" W x 24.0" H 9° Grate C= 0.600				
40				Limited to weir flow at low heads				
#3	Secondary 740.00			20.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 4.0" Round Culvert-Low Flow				
#4	#4 Device 1 736.00		-			Ka= 0.000		
				5.0' CPP, projecti		= -0.0667 '/' Cc= 0.900		
				.012, Flow Area= (0.0007 / CC- 0.900		
#5	Device 1	737.65'		"W x 6.0" H Vert.		0 600		
#3	DOVICE I	101.00		ted to weir flow at lo	•	0.000		
			LIM	ted to well now at lo	Jw neads			

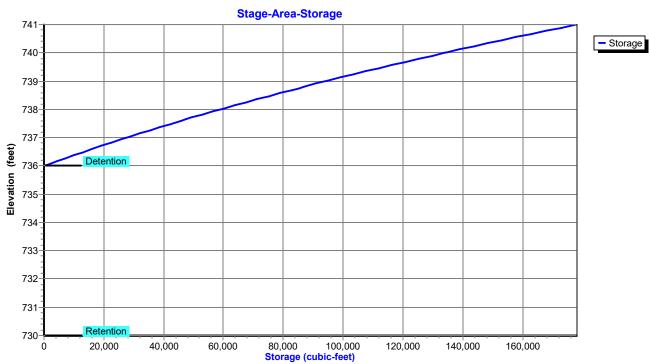
Proposed Conditions III Type II 24-hr 1-yr Rainfall=1.84" Prepared by Pinewoods Engineering, P.C. Printed 9/29/2022 HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC Page 11

Proposed Conditions - III


Primary OutFlow Max=0.40 cfs @ 20.03 hrs HW=737.64' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 0.40 cfs of 5.67 cfs potential flow)

-2=Grate (Controls 0.00 cfs)

-4=Culvert-Low Flow (Inlet Controls 0.40 cfs @ 4.61 fps)


-5=Orifice-High (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=730.00' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond P-2: Wet Pond P-2

Proposed Conditions III Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Pond P-2: Wet Pond P-2

Proposed Conditions IIIType II 24-hPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 13

Stage-Discharge for Pond P-2: Wet Pond P-2

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
730.00	0.00	0.00	0.00	737.65	0.40	0.40	0.00
730.15	0.00	0.00	0.00	737.80	0.70	0.70	0.00
730.30	0.00	0.00	0.00	737.95	1.23	1.23	0.00
730.45	0.00	0.00	0.00	738.10	1.91	1.91	0.00
730.60	0.00	0.00	0.00	738.25	2.56	2.56	0.00
730.75	0.00	0.00	0.00	738.40	3.02	3.02	0.00
730.90	0.00	0.00	0.00	738.55	3.41	3.41	0.00
			0.00	738.70	3.74	3.74	
731.05	0.00	0.00					0.00
731.20	0.00	0.00	0.00	738.85	4.31	4.31	0.00
731.35	0.00	0.00	0.00	739.00	5.65	5.65	0.00
731.50	0.00	0.00	0.00	739.15	8.00	8.00	0.00
731.65	0.00	0.00	0.00	739.30	10.78	10.78	0.00
731.80	0.00	0.00	0.00	739.45	11.16	11.16	0.00
731.95	0.00	0.00	0.00	739.60	11.52	11.52	0.00
732.10	0.00	0.00	0.00	739.75	11.87	11.87	0.00
732.25	0.00	0.00	0.00	739.90	12.21	12.21	0.00
732.40	0.00	0.00	0.00	740.05	13.27	12.54	0.73
732.55	0.00	0.00	0.00	740.20	18.70	12.86	5.84
732.70	0.00	0.00	0.00	740.35	26.67	13.18	13.49
732.85	0.00	0.00	0.00	740.50	36.49	13.48	23.01
733.00	0.00	0.00	0.00	740.65	47.83	13.78	34.05
733.15	0.00	0.00	0.00	740.80	60.50	14.08	46.42
733.30	0.00	0.00	0.00	740.95	74.35	14.37	59.98
733.45	0.00	0.00	0.00				
733.60	0.00	0.00	0.00				
733.75	0.00	0.00	0.00				
733.90	0.00	0.00	0.00				
734.05	0.00	0.00	0.00				
734.20	0.00	0.00	0.00				
734.35	0.00	0.00	0.00				
734.50	0.00	0.00	0.00				
734.65	0.00	0.00	0.00				
734.80	0.00	0.00	0.00				
734.95	0.00	0.00	0.00				
735.10	0.00	0.00	0.00				
735.25	0.00	0.00	0.00				
735.40	0.00	0.00	0.00				
735.55	0.00	0.00	0.00				
735.70	0.00	0.00	0.00				
735.85	0.00	0.00	0.00				
736.00							
	0.00	0.00	0.00				
736.15	0.04	0.04	0.00				
736.30	0.12	0.12	0.00				
736.45	0.18	0.18	0.00				
736.60	0.22	0.22	0.00				
736.75	0.25	0.25	0.00				
736.90	0.28	0.28	0.00				
737.05	0.31	0.31	0.00				
737.20	0.34	0.34	0.00				
737.35	0.36	0.36	0.00				
737.50	0.38	0.38	0.00				
-		_					

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 1-yr Rainfall=1.84" Printed 9/29/2022 Page 14

Stage-Area-Storage for Pond P-2: Wet Pond P-2

			-
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
730.00	0	737.65	47,612
730.15	0	737.80	52,448
730.30	0	737.95	57,372
730.45	0	738.10	62,385
730.60	0	738.25	67,487
730.75	0	738.40	72,680
730.90	0	738.55	77,965
731.05	0	738.70	83,341
731.20	0	738.85	88,810
731.35	0	739.00	94,372
731.50	0	739.15	100,029
731.65	0	739.30	105,782
731.80	0	739.45	111,630
731.95	0	739.60	117,575
732.10	0	739.75	123,617
732.25	0	739.90	129,758
732.40	0	740.05	135,998
732.55	0	740.20	142,339
732.70	0	740.35	148,779
732.85	0	740.50	155,322
733.00	0	740.65	161,967
733.15	0	740.80	168,714
733.30	0	740.95	175,566
733.45	0		
733.60	0		
733.75	0		
733.90	0		
734.05	0		
734.20	0		
734.35	0		
734.50	0		
734.65	0		
734.80	0		
734.95	0		
735.10	0		
735.25	0		
735.40	0		
735.55	0		
735.70	0		
735.85	0		
736.00 736.15	2 0 2 0		
736.15	3,920		
	7,919 11,998		
736.45 736.60	16,159		
736.75	20,401		
736.90	20,401 24,725		
736.90	24,725 29,133		
737.20	33,624		
737.35	38,201		
737.50	42,863		
101.00	72,003		
		1	

Summary for Link 3AR-I: 3A Reach

Inflow Are	a =	17.240 ac, 69.47% Impervious, Inflow Depth > 0.96" for 1-yr event
Inflow	=	0.40 cfs @ 20.03 hrs, Volume= 1.384 af
Primary	=	0.40 cfs $\overline{@}$ 20.09 hrs, Volume= 1.384 af, Atten= 0%, Lag= 3.6 min

Primary outflow = Inflow delayed by 3.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AR-II: 3A Reach

Inflow Are	a =	48.574 ac, 49.82% Impervious, Inflow Depth > 0.85" for 1-yr event
Inflow	=	17.50 cfs @ 12.38 hrs, Volume= 3.427 af
Primary	=	17.43 cfs @ 12.40 hrs, Volume= 3.427 af, Atten= 0%, Lag= 1.6 min

Primary outflow = Inflow delayed by 1.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AT: DA #3A Total

Inflow Are	a =	48.574 ac, 49.82% Impervious, Inflow Depth > 0.85" for 1-yr event
Inflow	=	17.50 cfs @ 12.38 hrs, Volume= 3.427 af
Primary	=	17.50 cfs @ 12.38 hrs, Volume= 3.427 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BP: Bypass

Inflow Area =	14.938 ac, 77.61% Impervious, Inflow I	Depth = 1.25" for 1-yr event
Inflow =	31.10 cfs @ 11.97 hrs, Volume=	1.553 af
Primary =	14.30 cfs @ 11.85 hrs, Volume=	1.357 af, Atten= 54%, Lag= 0.0 min
Secondary =	16.80 cfs @ 11.97 hrs, Volume=	0.196 af

Primary outflow = Inflow below 14.30 cfs, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BR: 3B Reach

Inflow Area	a =	7.407 ac, 19.33% Impervious, Inflow Depth = 0.63" for 1-yr event
Inflow	=	4.91 cfs @ 12.15 hrs, Volume= 0.391 af
Primary	=	4.87 cfs @ 12.29 hrs, Volume= 0.391 af, Atten= 1%, Lag= 8.6 min

Primary outflow = Inflow delayed by 8.5 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: DP #3 - Rush Crk

Inflow Are	a =	55.981 ac, 45.79% Impervious, Inflow Depth > 0.82" for 1-yr event
Inflow	=	21.61 cfs @ 12.36 hrs, Volume= 3.817 af
Primary	=	21.61 cfs @ 12.36 hrs, Volume= 3.817 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 3A-I: DA #3A-I

Runoff = 42.27 cfs @ 12.36 hrs, Volume= 4.885 af, Depth= 1.87"

Area	(ac) (CN Des	cription					
0.	000	74 >75	75% Grass cover, Good, HSG C					
19.	111	80 >75	% Grass c	over, Good	, HSG D			
0.	000	98 Pav	ed parking	, HSG C				
12.	223		ed parking					
			vel surface	,				
			vel surface	,				
0.	000	77 Wo	ods, Good,	HSG D				
			ighted Ave					
	111		99% Pervio					
12.	223	39.0	01% Imperv	vious Area				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	•		(cfs)	Description			
31.4	150			(013)	Sheet Flow,			
51.4	150	0.0100	0.08		Grass: Dense n= 0.240 P2= 2.20"			
3.9	380	0.0100	1.61		Shallow Concentrated Flow,			
0.0	500	0.0100	1.01		Unpaved Kv= 16.1 fps			
1.2	146	0.0100	2.03		Shallow Concentrated Flow,			
	110	0.0100	2.00		Paved Kv= 20.3 fps			
2.9	774		4.50		Direct Entry, Pipe Flow			
39.4	1,450	Total						

Summary for Subcatchment 3A-II: DA #3A-II

Runoff = 59.75 cfs @ 11.96 hrs, Volume= 3.106 af, Depth= 2.50"

Area	(ac)	CN	Desc	cription				
0.	000	74 >75% Grass cover, Good,				, HSG C		
3.	345	80	>75%	% Grass co	over, Good	, HSG D		
0.	000	98	Pave	ed parking	HSG C			
11.	593	98		Paved parking, HSG D				
0.	000	96	Grav	el surface	, HSG C			
0.	000	96		el surface	,			
0.	000	77	Woo	ds, Good,	HSG D			
14.	938	94	Weig	ghted Aver	age			
3.	345		22.3	9% Pervio	us Area			
11.	593		77.6	1% Imperv	vious Area			
Тс	Length		lope	Velocity	Capacity	Description		
(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)			
1.6	100	0.0)150	1.02		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 2.20"		
0.7	100	0.0)150	2.49		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
2.3	200) To	tal, Ir	ncreased t	o minimum	Tc = 6.0 min		
			·					

Summary for Subcatchment 3A-III: DA #3A-III

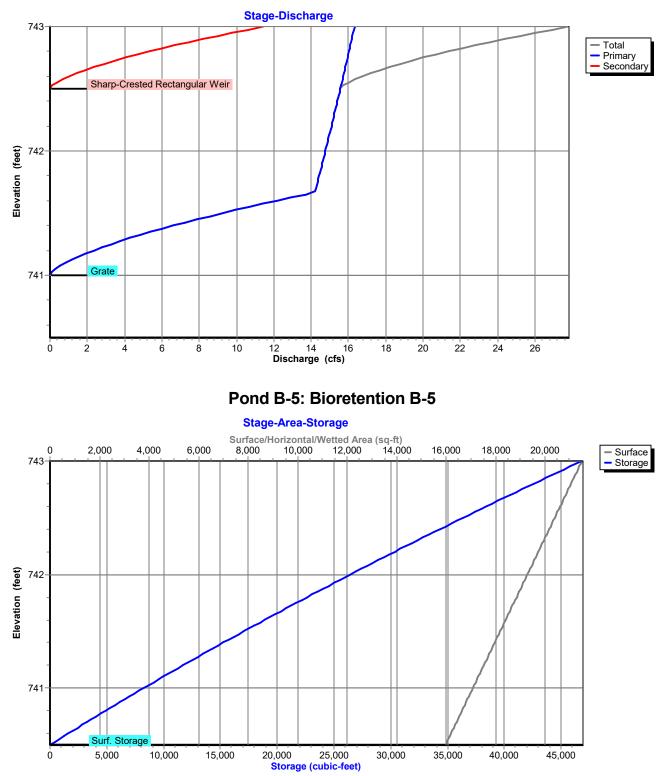
Runoff = 6.22 cfs @ 11.97 hrs, Volume= 0.301 af, Depth= 1.57"

Area	(ac) (CN [Desc	ription		
0.	000	74 >	>75%	6 Grass co	over, Good,	, HSG C
1.	918	80 >	>75%	6 Grass co	over, Good,	, HSG D
0.	000			d parking,		
0.	384	98 F	Pave	d parking,	HSG D	
0.	000	96 (Grav	el surface	, HSG C	
	000			el surface	,	
0.	000	77 \	Wood	ds, Good,	HSG D	
2.	302	83 \	Weig	hted Aver	age	
1.	918	8	83.32	2% Pervio	us Area	
0.	384		16.68	3% Imperv	vious Area	
Тс	Length		ope	Velocity	Capacity	Description
(min)	(feet)	(ft	t/ft)	(ft/sec)	(cfs)	
1.6	100	0.01	150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
3.9	860	0.03	330	3.69		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
5.5	960	Tota	al, In	creased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 3B: DA #3B

Runoff = 13.28 cfs @ 12.13 hrs, Volume= 1.013 af, Depth= 1.64"

Area	(ac) (CN	Desc	cription					
0.	000	74	>75%	% Grass co	over, Good,	, HSG C			
5.	920				over, Good,	, HSG D			
0.	000			ed parking					
	432		Paved parking, HSG D						
0.	000			el surface					
	055			el surface					
0.	000	77	Woo	ds, Good,	HSG D				
7.	407	84	Weig	ghted Aver	age				
5.	5.975			80.67% Pervious Area					
1.	432		19.3	3% Imperv	vious Area				
Tc (min)	Length (feet)		ope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
19.3	100		150	0.09		Sheet Flow,			
10.0	100	0.0	100	0.00		Grass: Dense n= 0.240 P2= 2.20"			
1.1	130	0.0	150	1.97		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
20.4	230	Tot	al			· · ·			


Inflow Ar Inflow Outflow Primary Seconda	= 14.30 = 13.28 = 13.28	cfs @ 11 cfs @ 12 cfs @ 12	51% Impervious, .70 hrs, Volumo 2.08 hrs, Volumo 2.08 hrs, Volumo .00 hrs, Volumo	e= e= e=	2.369 af		event ag= 22.9 min
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 741.65' @ 12.11 hrs Surf.Area= 18,504 sf Storage= 19,743 cf							
Plug-Flow detention time= 98.8 min calculated for 2.179 af (92% of inflow) Center-of-Mass det. time= 53.5 min (859.0 - 805.5)							
Volume	Invert	Avail.Stor	age Storage D	Description			
#1	740.50'	46,83	8 cf Surf. Stor	rage (Prisn	natic) Listed I	below (Rec	alc)
				•	-		
Elevatio	n Surf.A	Area	Inc.Store	Cum.Sto	ore		
(fee	t) (se	q-ft)	(cubic-feet)	(cubic-fee	et)		
740.5	i0 15.	980	0	`	0		
743.0	,	490	46,838	46,8	38		
	-		-,	- , -			
Device	Routing	Invert	Outlet Devices				
#1	Primary	737.00'	18.0" Round 0	Culvert			
	5		L= 170.0' CPF		dae headwall	l. Ke= 0.50	0
			Inlet / Outlet In				
			n= 0.012, Flow				
#2	Device 1	741.00'	24.0" x 24.0" H				
=			Limited to weir				
#3	Secondary	742.50'				rWeir 2 E	nd Contraction(s)
Primary OutFlow Max=13.09 cfs @ 12.08 hrs HW=741.64' TW=738.10' (Dynamic Tailwater) 1=Culvert (Outlet Controls 13.09 cfs @ 7.41 fps) 2=Grate (Passes 13.09 cfs of 13.42 cfs potential flow) Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=740.50' TW=0.00' (Dynamic Tailwater)							
Second	MARKAN AND AND AND AND AND AND AND AND AND A	$a_{\rm N} = 0.00$ of	a @ 1.00 hra U	M-740 EO	TM = 0.001	(Dynamia T	-oilwotor)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=740.50' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Conditions III

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III *Type II 24-hr 10-yr Rainfall=3.15"* Printed 9/29/2022 <u>C Page 26</u>

Pond B-5: Bioretention B-5

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 27

Stage-Discharge for Pond B-5: Bioretention B-5

Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)
740.50	0.00	0.00	0.00
740.55	0.00	0.00	0.00
740.60 740.65	0.00	0.00	0.00
740.65	0.00 0.00	0.00 0.00	0.00 0.00
740.75	0.00	0.00	0.00
740.80	0.00	0.00	0.00
740.85 740.90	0.00 0.00	0.00 0.00	0.00 0.00
740.90	0.00	0.00	0.00
741.00	0.00	0.00	0.00
741.05	0.29	0.29	0.00
741.10 741.15	0.83 1.52	0.83 1.52	0.00 0.00
741.13	2.34	2.34	0.00
741.25	3.27	3.27	0.00
741.30	4.30	4.30	0.00
741.35 741.40	5.42 6.62	5.42 6.62	0.00 0.00
741.45	7.90	7.90	0.00
741.50	9.25	9.25	0.00
741.55 741.60	10.67 12.16	10.67 12.16	0.00 0.00
741.65	13.71	13.71	0.00
741.70	14.27	14.27	0.00
741.75 741.80	14.35 14.44	14.35 14.44	0.00 0.00
741.80	14.44	14.44	0.00
741.90	14.60	14.60	0.00
741.95	14.69	14.69	0.00
742.00 742.05	14.77 14.85	14.77 14.85	0.00 0.00
742.10	14.93	14.93	0.00
742.15	15.01	15.01	0.00
742.20 742.25	15.09 15.17	15.09 15.17	0.00 0.00
742.30	15.25	15.25	0.00
742.35	15.33	15.33	0.00
742.40 742.45	15.41	15.41	0.00
742.45	15.49 15.57	15.49 15.57	0.00 0.00
742.55	16.01	15.65	0.37
742.60	16.75	15.72	1.03
742.65 742.70	17.69 18.79	15.80 15.88	1.89 2.91
742.75	20.02	15.95	4.07
742.80	21.37	16.03	5.34
742.85 742.90	22.83 24.38	16.10 16.18	6.72 8.21
742.90	26.04	16.25	9.78
743.00	27.77	16.33	11.45

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 28

Stage-Area-Storage for Pond B-5: Bioretention B-5

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
(feet) 740.50 740.55 740.60 740.65 740.70 740.75 740.80 740.85 740.90 740.95 741.00 741.05 741.00 741.15 741.20 741.25 741.30 741.25 741.30 741.35 741.40 741.45 741.50 741.55 741.60 741.55 741.60 741.65 741.70 741.75 741.80 741.85 741.90 741.95 742.00 742.05 742.10 742.25 742.30	(sq-ft) 15,980 16,090 16,200 16,311 16,421 16,531 16,641 16,751 16,862 16,972 17,082 17,192 17,302 17,413 17,523 17,633 17,743 17,853 17,633 17,743 17,853 17,964 18,074 18,184 18,294 18,074 18,184 18,294 18,404 18,515 18,625 18,735 18,845 18,955 19,066 19,176 19,286 19,396 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,506 19,507 19,837 19,947	(cubic-feet) 0 802 1,609 2,422 3,240 4,064 4,893 5,728 6,568 7,414 8,266 9,122 9,985 10,853 11,726 12,605 13,489 14,379 15,275 16,176 17,082 17,994 18,911 19,834 20,763 21,697 22,636 23,581 24,532 25,488 26,450 27,417 28,389 29,367 30,351 31,340 32,334
742.20 742.25 742.30 742.35 742.40 742.45 742.50 742.55 742.60 742.65 742.70	19,727 19,837 20,057 20,168 20,278 20,388 20,498 20,608 20,719 20,829	30,351 31,340 32,334 33,335 34,340 35,351 36,368 37,390 38,418 39,451 40,490
742.75	20,939	41,534
742.80	21,049	42,584
742.85	21,159	43,639
742.90	21,270	44,700
742.95	21,380	45,766
743.00	21,490	46,838

Proposed Conditions IIITypPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

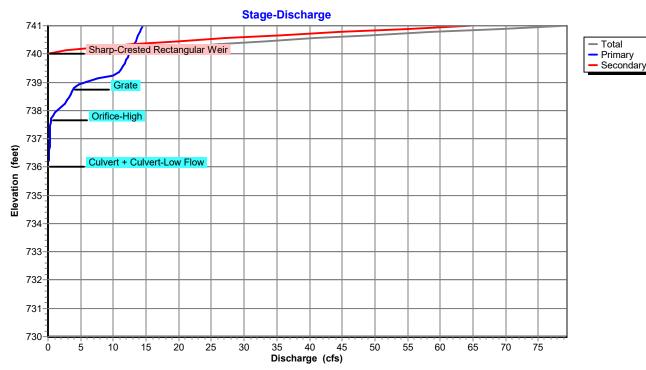
Summary for Pond P-2: Wet Pond P-2

Inflow Area =	17.240 ac, 69.47% Impervious, Inflow	v Depth = 2.24" for 10-yr event
Inflow =	64.15 cfs @ 11.97 hrs, Volume=	3.217 af
Outflow =	3.58 cfs @ 13.18 hrs, Volume=	3.112 af, Atten= 94%, Lag= 72.9 min
Primary =	3.58 cfs @ 13.18 hrs, Volume=	3.112 af
Secondary =	0.00 cfs @ 1.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 738.62' @ 13.18 hrs Surf.Area= 54,920 sf Storage= 80,627 cf

Plug-Flow detention time= 780.5 min calculated for 3.110 af (97% of inflow) Center-of-Mass det. time= 761.6 min (1,585.3 - 823.7)

Volume	Invert	Avail.Sto	orage	Storage Description	on				
#1	730.00'	730.00' 0 cf		Retention (Irregular) Listed below (Recalc)					
	700.001			46,278 cf Overall					
#2	736.00'	177,8		Detention (Irregu		Recalc)			
		177,8	73 cf	Total Available Sto	orage				
Elevatio	on Surf	.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee	et) (sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
730.0	00	3,490	498.0	0	0	3,490			
734.5	50	8,488	612.0	26,131	26,131	13,865			
736.0	00 1	9,080	800.0	20,147	46,278	35,016			
Elevatio	on Surf	.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area			
(fee		sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
736.0			957.0	0	0	25,870			
741.0		,	082.0	177,873	177,873	46,783			
		, ,			,	,			
Device	Routing	Invert	Outl	Outlet Devices					
#1	Primary	736.00'		24.0" Round Culvert					
				20.0' CPP, end-se					
						= 0.0038 '/' Cc= 0.900			
	D · · · ·			.025 Corrugated m		3.14 st			
#2	Device 1	738.75'		24.0" W x 24.0" H 9° Grate C= 0.600					
40	C	740.00		ted to weir flow at lo					
#3	Secondary	740.00'		20.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s) 4.0" Round Culvert-Low Flow					
#4	Device 1	736.00'	-			$K_{0} = 0.000$			
				5.0' CPP, projecti		= -0.0667 '/' Cc= 0.900			
				.012, Flow Area= (0.0007 / CC- 0.900			
#5	Device 1	737.65'		"W x 6.0" H Vert.		0.600			
#3	DOVICE I	101.00		ted to weir flow at lo	•	0.000			
			LIM	ted to well now at lo	Jw neads				


Primary OutFlow Max=3.58 cfs @ 13.18 hrs HW=738.62' TW=0.00' (Dynamic Tailwater) **1=Culvert** (Passes 3.58 cfs of 9.40 cfs potential flow)

2=Grate (Controls 0.00 cfs)

-4=Culvert-Low Flow (Inlet Controls 0.52 cfs @ 5.96 fps)

-5=Orifice-High (Orifice Controls 3.06 cfs @ 4.08 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=730.00' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond P-2: Wet Pond P-2

Proposed Conditions IIITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage 741 - Storage 740 739 738 737 Elevation (feet) Detention 736 735 734 733 732 731 730-20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 Ò Storage (cubic-feet)

Pond P-2: Wet Pond P-2

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 10-yr Rainfall=3.15" Printed 9/29/2022 Page 32

Stage-Discharge for Pond P-2: Wet Pond P-2

	D . 1	- ·	<u> </u>		.	_ .	. .
Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
730.00	0.00	0.00	0.00	737.65	0.40	0.40	0.00
730.15	0.00	0.00	0.00	737.80	0.70	0.70	0.00
730.30	0.00	0.00	0.00	737.95	1.23	1.23	0.00
730.45	0.00	0.00	0.00	738.10	1.91	1.91	0.00
730.60	0.00	0.00	0.00	738.25	2.56	2.56	0.00
730.75	0.00	0.00	0.00	738.40	3.02	3.02	0.00
730.90	0.00	0.00	0.00	738.55	3.41	3.41	0.00
731.05	0.00	0.00	0.00	738.70	3.74	3.74	0.00
731.20	0.00	0.00	0.00	738.85	4.31	4.31	0.00
731.35	0.00	0.00	0.00	739.00	5.65	5.65	0.00
731.50	0.00	0.00	0.00	739.15	8.00	8.00	0.00
731.65	0.00	0.00	0.00	739.30	10.78	10.78	0.00
731.80	0.00	0.00	0.00	739.45	11.16	11.16	0.00
731.95	0.00	0.00	0.00	739.60	11.52	11.52	0.00
732.10	0.00	0.00	0.00	739.75	11.87	11.87	0.00
732.25	0.00	0.00	0.00	739.90	12.21	12.21	0.00
732.40	0.00	0.00	0.00	740.05	13.27	12.54	0.73
732.55	0.00	0.00	0.00	740.20	18.70	12.86	5.84
732.70	0.00	0.00	0.00	740.35	26.67	13.18	13.49
732.85	0.00	0.00	0.00	740.50	36.49	13.48	23.01
733.00	0.00	0.00	0.00	740.65	47.83	13.78	34.05
733.15	0.00	0.00	0.00	740.80	60.50	14.08	46.42
733.30	0.00	0.00	0.00	740.95	74.35	14.37	59.98
733.45	0.00	0.00	0.00				
733.60	0.00	0.00	0.00				
733.75	0.00	0.00	0.00				
733.90	0.00	0.00	0.00				
734.05	0.00	0.00	0.00				
734.20	0.00	0.00	0.00				
734.35	0.00	0.00	0.00				
734.50	0.00	0.00	0.00				
734.65	0.00	0.00	0.00				
734.80	0.00	0.00	0.00				
734.95	0.00	0.00	0.00				
735.10	0.00	0.00	0.00				
735.25	0.00	0.00	0.00				
735.40	0.00	0.00	0.00				
735.55	0.00	0.00	0.00				
735.70	0.00	0.00	0.00				
735.85	0.00	0.00	0.00				
736.00	0.00	0.00	0.00				
736.15	0.04	0.00	0.00				
736.30	0.12	0.12	0.00				
736.45	0.12	0.12	0.00				
736.60	0.22	0.10	0.00				
736.75	0.22	0.22	0.00				
736.90	0.28	0.23	0.00				
737.05	0.28	0.28	0.00				
737.00	0.31	0.31	0.00				
737.35	0.34	0.34	0.00				
737.50	0.38	0.30	0.00				
131.30	0.00	0.50	0.00				
				I			

Proposed Conditions IIITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond P-2: Wet Pond P-2

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
730.00	0	737.65	47,612
730.15	0	737.80	52,448
730.30	0	737.95	57,372
730.45	0	738.10	62,385
730.60	0	738.25	67,487
730.75	0	738.40	72,680
730.90	0	738.55	77,965
731.05	0	738.70	83,341
731.20	0	738.85	88,810
731.35	0	739.00	94,372
731.50	0	739.15	100,029
731.65	0	739.30	105,782
731.80	0	739.45	111,630
731.95	0	739.60	117,575
732.10	0	739.75	123,617
732.25 732.40	0	739.90	129,758
732.55	0 0	740.05 740.20	135,998 142,339
732.55	0	740.20	142,339
732.85	0	740.50	155,322
733.00	0	740.50	161,967
733.15	0	740.80	168,714
733.30	0 0	740.95	175,566
733.45	Ő	140.00	170,000
733.60	Ő		
733.75	0		
733.90	0		
734.05	0		
734.20	0		
734.35	0		
734.50	0		
734.65	0		
734.80	0		
734.95	0		
735.10	0		
735.25	0		
735.40	0		
735.55	0		
735.70	0		
735.85	0		
736.00	0		
736.15	3,920		
736.30 736.45	7,919 11,998		
736.60	16,159		
736.75	20,401		
736.90	20,401		
737.05	29,133		
737.20	33,624		
737.35	38,201		
737.50	42,863		
	-		

Summary for Link 3AR-I: 3A Reach

Inflow Are	a =	17.240 ac, 69.47% Impervious, Inflow Depth > 2.17" for 10-yr event
Inflow	=	3.58 cfs @ 13.18 hrs, Volume= 3.112 af
Primary	=	3.58 cfs @ 13.24 hrs, Volume= 3.112 af, Atten= 0%, Lag= 3.6 min

Primary outflow = Inflow delayed by 3.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AR-II: 3A Reach

Inflow Are	a =	48.574 ac, 49.82% Impervious, Inflow Depth > 1.98" for 10-yr event
Inflow	=	45.25 cfs @ 12.36 hrs, Volume= 7.996 af
Primary	=	45.08 cfs @ 12.39 hrs, Volume= 7.996 af, Atten= 0%, Lag= 1.6 min

Primary outflow = Inflow delayed by 1.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AT: DA #3A Total

Inflow Are	a =	48.574 ac, 49.82% Impervious, Inflow Depth > 1.98" for 10-yr event
Inflow	=	45.25 cfs @ 12.36 hrs, Volume= 7.996 af
Primary	=	45.25 cfs @ 12.36 hrs, Volume= 7.996 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BP: Bypass

Inflow Area =	14.938 ac, 77.61% Impervious, Inflow	Depth = 2.50" for 10-yr event
Inflow =	59.75 cfs @ 11.96 hrs, Volume=	3.106 af
Primary =	14.30 cfs @ 11.70 hrs, Volume=	2.369 af, Atten= 76%, Lag= 0.0 min
Secondary =	45.45 cfs @ 11.96 hrs, Volume=	0.737 af

Primary outflow = Inflow below 14.30 cfs, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BR: 3B Reach

Inflow Are	a =	7.407 ac, 19.33% Impervious, Inflow Depth = 1.64" for 10-yr event
Inflow	=	13.28 cfs @ 12.13 hrs, Volume= 1.013 af
Primary	=	13.17 cfs @ 12.28 hrs, Volume= 1.013 af, Atten= 1%, Lag= 8.5 min

Primary outflow = Inflow delayed by 8.5 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: DP #3 - Rush Crk

Inflow Are	a =	55.981 ac, 45.79% Impervious, Inflow Depth > 1.93" for 10-yr event
Inflow	=	56.47 cfs @ 12.34 hrs, Volume= 9.009 af
Primary	=	56.47 cfs @ 12.34 hrs, Volume= 9.009 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 3A-I: DA #3A-I

Runoff = 56.84 cfs @ 12.35 hrs, Volume= 6.574 af, Depth= 2.52"

Area	(ac) (CN Des	cription		
0.	000	74 >75	% Grass c	over, Good	, HSG C
19.	111	80 >75	% Grass c	over, Good	, HSG D
0.	000	98 Pav	ed parking	, HSG C	
12.	223		ed parking		
			vel surface	,	
			vel surface	,	
0.	000	77 Wo	ods, Good,	HSG D	
			ighted Ave		
	111		99% Pervio		
12.	223	39.0	01% Imperv	vious Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	•		(cfs)	Description
31.4	150			(013)	Sheet Flow,
51.4	150	0.0100	0.08		Grass: Dense n= 0.240 P2= 2.20"
3.9	380	0.0100	1.61		Shallow Concentrated Flow,
0.0	500	0.0100	1.01		Unpaved Kv= 16.1 fps
1.2	146	0.0100	2.03		Shallow Concentrated Flow,
	110	0.0100	2.00		Paved Kv= 20.3 fps
2.9	774		4.50		Direct Entry, Pipe Flow
39.4	1,450	Total			

Summary for Subcatchment 3A-II: DA #3A-II

Runoff = 75.34 cfs @ 11.96 hrs, Volume= 3.980 af, Depth= 3.20"

Area	(ac) (CN E	Descr	ription					
0.	000	74 >	•75%	75% Grass cover, Good, HSG C					
3.	345				over, Good,	, HSG D			
0.	000	98 F	Paveo	d parking,	HSG C				
11.	593			d parking,					
0.	000	96 0	Grave	el surface	, HSG C				
	000			el surface	,				
0.	000	77 V	Vooc	ls, Good,	HSG D				
14.	938	94 V	Veigl	hted Aver	age				
3.	345	2	2.39	% Pervio	us Area				
11.	593	7	7.61	% Imperv	vious Area				
Tc	Length	Slo	ре	Velocity	Capacity	Description			
(min)	(feet)	(ft	/ft)	(ft/sec)	(cfs)				
1.6	100	0.01	50	1.02		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 2.20"			
0.7	100	0.01	50	2.49		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
2.3	200	Tota	il, In	creased t	o minimum	Tc = 6.0 min			
			-						

Summary for Subcatchment 3A-III: DA #3A-III

Runoff = 8.56 cfs @ 11.97 hrs, Volume= 0.417 af, Depth= 2.17"

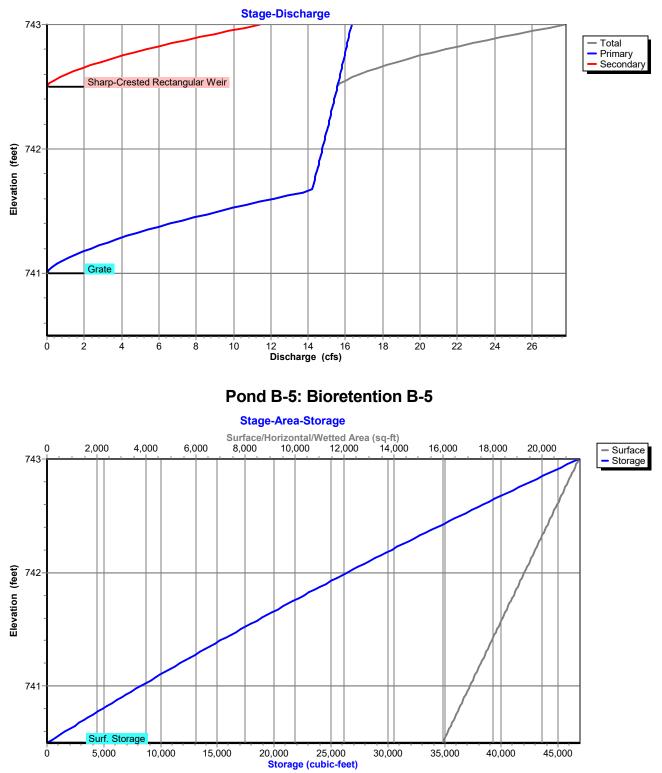
Area	(ac)	CN	Desc	cription		
0.	000	74	>75%	% Grass co	over, Good,	HSG C
1.	918	80	>75%	% Grass co	over, Good,	HSG D
0.	000	98	Pave	ed parking,	HSG C	
0.	384	98	Pave	ed parking,	HSG D	
0.	000	96	Grav	el surface	, HSG C	
0.	000	96		el surface	,	
0.	000	77	Woo	ds, Good,	HSG D	
2.	302	83	Weig	ghted Aver	age	
1.	918		83.3	2% Pervio	us Area	
0.	384		16.6	8% Imperv	vious Area	
Тс	Lengtl		Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.6	100	0.0	0150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
3.9	860) O.	0330	3.69		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
5.5	960) To	otal, Ir	ncreased t	o minimum	Tc = 6.0 min
			,			

Summary for Subcatchment 3B: DA #3B

Runoff = 18.27 cfs @ 12.13 hrs, Volume= 1.393 af, Depth= 2.26"

Area	(ac) (CN De	escription		
0.	000	74 >7	5% Grass c	over, Good	, HSG C
5.	920		5% Grass c		, HSG D
0.			ved parking		
			ved parking	,	
0.			avel surface	,	
			avel surface	,	
0.	000	77 W	oods, Good,	HSG D	
7.	407		eighted Ave	•	
-	975		.67% Pervic		
1.	432	19	.33% Imper	vious Area	
Tc (min)	Length (feet)			Capacity (cfs)	Description
19.3	100	0.015	0.09		Sheet Flow,
1.1	130	0.015	0 1.97		Grass: Dense n= 0.240 P2= 2.20" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
20.4	230	Total			

Summary for Pond B-5: Bioretention B-5


Inflow Area = Inflow = Outflow = Primary = Secondary =	ow = 14.30 cfs @ 11.70 hrs, Volume= 2.903 af tflow = 13.22 cfs @ 11.99 hrs, Volume= 2.714 af, Atten= 8%, Lag= 17.6 min mary = 13.22 cfs @ 11.99 hrs, Volume= 2.714 af					
Routing by Dyn-Si Peak Elev= 741.6						
Plug-Flow detention Center-of-Mass de				of inflow)		
Volume Inve	ert Avail.Sto	rage Storage	Description			
#1 740.5				tic) Listed below (Recalc)		
	,		J			
Elevation	Surf.Area	Inc.Store	Cum.Store			
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)			
740.50	15,980	0	0			
743.00	21,490	46,838	46,838			
Device Routing	Invert	Outlet Device	es			
#1 Primary	737.00'	18.0" Round				
				e headwall, Ke= 0.500		
				/ 736.00' S= 0.0059 '/' Cc= 0.900		
		,	ow Area= 1.77 s			
#2 Device 1	741.00'		'Horiz. Grate			
			ir flow at low he			
#3 Seconda	ary 742.50'	10.0' long Sh	harp-Crested Re	ectangular Weir 2 End Contraction(s)		
1=Culvert (Ou 2=Grate (P	itlet Controls 12 asses 12.60 cfs	.60 cfs @ 7.13 of 13.15 cfs p	fps) otential flow)	W=738.36' (Dynamic Tailwater)		

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=740.50' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Conditions III

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 C Page 45

Pond B-5: Bioretention B-5

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 46

Stage-Discharge for Pond B-5: Bioretention B-5

Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)
740.50	0.00	0.00	0.00
740.55	0.00	0.00	0.00
740.60 740.65	0.00	0.00	0.00
740.65	0.00 0.00	0.00 0.00	0.00 0.00
740.75	0.00	0.00	0.00
740.80	0.00	0.00	0.00
740.85 740.90	0.00 0.00	0.00 0.00	0.00 0.00
740.90	0.00	0.00	0.00
741.00	0.00	0.00	0.00
741.05	0.29	0.29	0.00
741.10 741.15	0.83 1.52	0.83 1.52	0.00 0.00
741.13	2.34	2.34	0.00
741.25	3.27	3.27	0.00
741.30	4.30	4.30	0.00
741.35 741.40	5.42 6.62	5.42 6.62	0.00 0.00
741.45	7.90	7.90	0.00
741.50	9.25	9.25	0.00
741.55 741.60	10.67 12.16	10.67 12.16	0.00 0.00
741.65	13.71	13.71	0.00
741.70	14.27	14.27	0.00
741.75 741.80	14.35 14.44	14.35 14.44	0.00 0.00
741.80	14.44	14.44	0.00
741.90	14.60	14.60	0.00
741.95	14.69	14.69	0.00
742.00 742.05	14.77 14.85	14.77 14.85	0.00 0.00
742.10	14.93	14.93	0.00
742.15	15.01	15.01	0.00
742.20 742.25	15.09 15.17	15.09 15.17	0.00 0.00
742.30	15.25	15.25	0.00
742.35	15.33	15.33	0.00
742.40 742.45	15.41	15.41	0.00
742.45 742.50	15.49 15.57	15.49 15.57	0.00 0.00
742.55	16.01	15.65	0.37
742.60	16.75	15.72	1.03
742.65 742.70	17.69 18.79	15.80 15.88	1.89 2.91
742.75	20.02	15.95	4.07
742.80	21.37	16.03	5.34
742.85 742.90	22.83 24.38	16.10 16.18	6.72 8.21
742.90	26.04	16.25	9.78
743.00	27.77	16.33	11.45

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 47

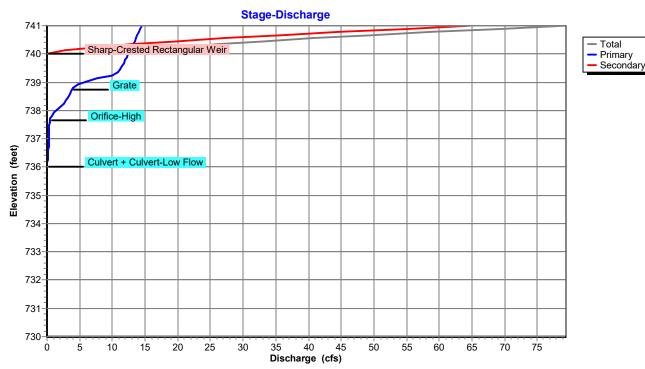
Stage-Area-Storage for Pond B-5: Bioretention B-5

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
Elevation (feet) 740.50 740.55 740.60 740.65 740.70 740.75 740.80 740.95 741.00 741.05 741.00 741.05 741.10 741.25 741.20 741.25 741.30 741.25 741.30 741.35 741.40 741.55 741.60 741.55 741.60 741.65 741.70 741.75 741.80 741.85 741.90 741.95 742.00 742.05 742.10 742.25 742.30 742.35	Surface (sq-ft) 15,980 16,090 16,200 16,311 16,421 16,531 16,641 16,751 16,862 16,972 17,082 17,192 17,302 17,413 17,523 17,633 17,743 17,853 17,743 17,853 17,743 17,853 17,964 18,074 18,184 18,294 18,404 18,515 18,625 18,735 18,845 18,955 19,066 19,176 19,286 19,396 19,506 19,506 19,506 19,506 19,506	Storage (cubic-feet) 0 802 1,609 2,422 3,240 4,064 4,893 5,728 6,568 7,414 8,266 9,122 9,985 10,853 11,726 12,605 13,489 14,379 15,275 16,176 17,082 17,994 18,911 19,834 20,763 21,697 22,636 23,581 24,532 25,488 26,450 27,417 28,389 29,367 30,351 31,340 32,334 33,335
742.15 742.20 742.25 742.30 742.35 742.40 742.45 742.50 742.55	19,617 19,727 19,837 20,057 20,168 20,278 20,388 20,498	29,367 30,351 31,340 32,334 33,335 34,340 35,351 36,368 37,390
742.33 742.60 742.65 742.70 742.75 742.80 742.85 742.90 742.95 743.00	20,498 20,608 20,719 20,829 20,939 21,049 21,159 21,270 21,380 21,490	37,390 38,418 39,451 40,490 41,534 42,584 43,639 44,700 45,766 46,838

Summary for Pond P-2: Wet Pond P-2

Inflow Area =	17.240 ac, 69.47% Impervious, Inflow	Depth = 2.93" for 25-yr event
Inflow =	82.52 cfs @ 11.97 hrs, Volume=	4.207 af
Outflow =	7.89 cfs @ 12.65 hrs, Volume=	4.099 af, Atten= 90%, Lag= 41.1 min
Primary =	7.89 cfs @ 12.65 hrs, Volume=	4.099 af
Secondary =	0.00 cfs $\overline{@}$ 1.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 739.14' @ 12.65 hrs Surf.Area= 57,086 sf Storage= 99,813 cf


Plug-Flow detention time= 637.7 min calculated for 4.099 af (97% of inflow) Center-of-Mass det. time= 621.1 min (1,435.0 - 813.8)

Volume	Invert	Avail.Sto	orage	Storage Descriptio	n	
#1	730.00'		0 cf	Retention (Irregul		Recalc)
#2	736.00'	177 0	72 of	46,278 cf Overall		
<u>#</u> 2	730.00	177,8	73 cf	Detention (Irregul		(ecaic)
		177,0	13 01	Total Available Sto	naye	
Elevatio	on Surf	Area F	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
730.0	00	3,490	498.0	0	0	3,490
734.5		,	612.0	26,131	26,131	13,865
736.0	0 1	9,080	800.0	20,147	46,278	35,016
Elevatio		Area F	Perim.	Inc.Store	Cum.Store	Wet.Area
fee		.Area F (sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
736.0			<u>(1881)</u> 957.0	0	0	25,870
741.0		· ·	082.0	177.873	177,873	46,783
		0,200 .,	002.0	,0.0	,010	10,100
Device	Routing	Invert	Outl	et Devices		
#1	Primary	736.00'	24.0	" Round Culvert		
				20.0' CPP, end-se		
						0.0038 '/' Cc= 0.900
# 0	Davias 1	700 751		.025 Corrugated m " W x 24.0" H 9° Gr		3.14 st
#2	Device 1	738.75'		ted to weir flow at lo		
#3	Secondary	740.00'				leir 2 End Contraction(s)
#4	Device 1	736.00		Round Culvert-Lo		
			L= 1	5.0' CPP, projectir	ng, no headwall, K	(e= 0.900
						-0.0667 '/' Cc= 0.900
				.012, Flow Area= 0		
#5	Device 1	737.65'		" W x 6.0" H Vert. C	•	0.600
			Limi	ted to weir flow at lo	w heads	

Primary OutFlow Max=7.88 cfs @ 12.65 hrs HW=739.14' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 7.88 cfs of 10.38 cfs potential flow) 2=Grate (Weir Controls 3.29 cfs @ 1.74 fps)

-4=Culvert-Low Flow (Inlet Controls 0.57 cfs @ 6.56 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=730.00' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond P-2: Wet Pond P-2

Proposed Conditions IIITyPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage 741 - Storage 740 739 738 737 Elevation (feet) Detention 736 735 734 733 732 731 730-20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 Ò Storage (cubic-feet)

Pond P-2: Wet Pond P-2

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 25-yr Rainfall=3.87" Printed 9/29/2022 Page 51

Stage-Discharge for Pond P-2: Wet Pond P-2

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
730.00	0.00	0.00	0.00	737.65	0.40	0.40	0.00
730.15	0.00	0.00	0.00	737.80	0.70	0.70	0.00
730.30	0.00	0.00	0.00	737.95	1.23	1.23	0.00
730.45	0.00	0.00	0.00	738.10	1.91	1.91	0.00
730.60	0.00	0.00	0.00	738.25	2.56	2.56	0.00
730.75	0.00	0.00	0.00	738.40	3.02	3.02	0.00
730.90	0.00	0.00	0.00	738.55	3.41	3.41	0.00
731.05	0.00	0.00	0.00	738.70	3.74	3.74	0.00
731.20	0.00	0.00	0.00	738.85	4.31	4.31	0.00
731.35	0.00	0.00	0.00	739.00	5.65	5.65	0.00
731.50	0.00	0.00	0.00	739.15	8.00	8.00	0.00
731.65	0.00	0.00	0.00	739.30	10.78	10.78	0.00
731.80	0.00	0.00	0.00	739.45	11.16	11.16	0.00
731.95	0.00	0.00	0.00	739.60	11.52	11.52	0.00
732.10	0.00	0.00	0.00	739.75	11.87	11.87	0.00
732.25	0.00	0.00	0.00	739.90	12.21	12.21	0.00
732.40	0.00	0.00	0.00	740.05	13.27	12.54	0.73
732.55	0.00	0.00	0.00	740.20	18.70	12.86	5.84
732.70	0.00	0.00	0.00	740.35	26.67	13.18	13.49
732.85	0.00	0.00	0.00	740.50	36.49	13.48	23.01
733.00	0.00	0.00	0.00	740.65	47.83	13.78	34.05
733.15	0.00	0.00	0.00	740.80	60.50	14.08	46.42
733.30	0.00	0.00	0.00	740.95	74.35	14.37	59.98
733.45	0.00	0.00	0.00				
733.60	0.00	0.00	0.00				
733.75	0.00	0.00	0.00				
733.90	0.00	0.00	0.00				
734.05	0.00	0.00	0.00				
734.20	0.00	0.00	0.00				
734.35	0.00	0.00	0.00				
734.50	0.00	0.00	0.00				
734.65	0.00	0.00	0.00				
734.80	0.00	0.00	0.00				
734.95	0.00	0.00	0.00				
735.10	0.00	0.00	0.00				
735.25	0.00	0.00	0.00				
735.40	0.00	0.00	0.00				
735.55	0.00	0.00	0.00				
735.70	0.00	0.00	0.00				
735.85	0.00	0.00	0.00				
736.00	0.00	0.00	0.00				
736.15	0.04	0.04	0.00				
736.30	0.12	0.12	0.00				
736.45	0.18	0.18	0.00				
736.60	0.22	0.22	0.00				
736.75	0.25	0.25	0.00				
736.90	0.28	0.28	0.00				
737.05	0.31	0.31	0.00				
737.20	0.34	0.34	0.00				
737.35	0.34	0.34	0.00				
	0.38	0.38	0.00				
737.50	0.30	0.38	0.00				
				I			

Proposed Conditions IIITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond P-2: Wet Pond P-2

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
730.00	0	737.65	47,612
730.15	0	737.80	52,448
730.30	0	737.95	57,372
730.45	0	738.10	62,385
730.60	0	738.25	67,487
730.75	0	738.40	72,680
730.90	0	738.55	77,965
731.05	0	738.70	83,341
731.20	0	738.85	88,810
731.35	0	739.00	94,372
731.50	0	739.15	100,029
731.65	0	739.30	105,782
731.80	0	739.45	111,630
731.95	0	739.60	117,575
732.10	0	739.75	123,617
732.25 732.40	0	739.90	129,758
732.55	0 0	740.05 740.20	135,998 142,339
732.55	0	740.20	142,339
732.85	0	740.50	155,322
733.00	0	740.50	161,967
733.15	0	740.80	168,714
733.30	0 0	740.95	175,566
733.45	Ő	140.00	170,000
733.60	Ő		
733.75	0		
733.90	0		
734.05	0		
734.20	0		
734.35	0		
734.50	0		
734.65	0		
734.80	0		
734.95	0		
735.10	0		
735.25	0		
735.40	0		
735.55	0		
735.70	0		
735.85	0		
736.00	0		
736.15	3,920		
736.30 736.45	7,919 11,998		
736.60	16,159		
736.75	20,401		
736.90	20,401		
737.05	29,133		
737.20	33,624		
737.35	38,201		
737.50	42,863		
	-		

Summary for Link 3AR-I: 3A Reach

Inflow Are	a =	17.240 ac, 69.47% Impervious, Inflow Depth > 2.85" for 25-yr event
Inflow	=	7.89 cfs @ 12.65 hrs, Volume= 4.099 af
Primary	=	7.88 cfs @ 12.71 hrs, Volume= 4.099 af, Atten= 0%, Lag= 3.7 min

Primary outflow = Inflow delayed by 3.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AR-II: 3A Reach

Inflow Are	a =	48.574 ac, 49.82% Impervious, Inflow Depth > 2.64" for 25-yr event
Inflow	=	62.85 cfs @ 12.36 hrs, Volume= 10.673 af
Primary	=	62.62 cfs @ 12.39 hrs, Volume= 10.673 af, Atten= 0%, Lag= 1.6 min

Primary outflow = Inflow delayed by 1.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AT: DA #3A Total

Inflow Are	a =	48.574 ac, 49.82% Impervious, Inflow Depth > 2.64" for 25-yr event
Inflow	=	62.85 cfs @ 12.36 hrs, Volume= 10.673 af
Primary	=	62.85 cfs @ 12.36 hrs, Volume= 10.673 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BP: Bypass

Inflow Area =	14.938 ac, 77.61% Impervious, Inflow D	epth = 3.20" for 25-yr event
Inflow =	75.34 cfs @ 11.96 hrs, Volume=	3.980 af
Primary =	14.30 cfs @ 11.70 hrs, Volume=	2.903 af, Atten= 81%, Lag= 0.0 min
Secondary =	61.04 cfs @ 11.96 hrs, Volume=	1.076 af

Primary outflow = Inflow below 14.30 cfs, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BR: 3B Reach

Inflow Are	a =	7.407 ac, 19.33% Impervious, Inflow Depth = 2.26" for 25-yr event
Inflow	=	18.27 cfs @ 12.13 hrs, Volume= 1.393 af
Primary	=	18.16 cfs @ 12.27 hrs, Volume= 1.393 af, Atten= 1%, Lag= 8.5 min

Primary outflow = Inflow delayed by 8.5 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: DP #3 - Rush Crk

Inflow Area	a =	55.981 ac, 45.79% Impervious, Inflow Depth > 2.59" for 25-yr event
Inflow	=	78.16 cfs @ 12.34 hrs, Volume= 12.066 af
Primary	=	78.16 cfs @ 12.34 hrs, Volume= 12.066 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 3A-I: DA #3A-I

Runoff = 85.61 cfs @ 12.35 hrs, Volume= 9.981 af, Depth= 3.82"

 Area ((ac)	CN	Desc	cription		
0.	000	74	>75%	6 Grass co	over, Good	, HSG C
19.	111	80	>75%	6 Grass co	over, Good	, HSG D
0.	000	98	Pave	ed parking,	HSG C	
12.	223	98	Pave	ed parking,	HSG D	
0.	000	96	Grav	el surface	, HSG C	
	000	96		el surface	,	
 0.	000	77	Woo	ds, Good,	HSG D	
31.	334	87		ghted Aver		
-	111			9% Pervio		
12.	223		39.0	1% Imperv	vious Area	
То	Longth		lono	Volocity	Consoity	Description
Tc (min)	Length			Velocity	Capacity	Description
 (min)	(feet)		<u>(ft/ft)</u>	(ft/sec)	(cfs)	
31.4	150	0.0	0100	0.08		Sheet Flow,
2.0	200		0400	4.04		Grass: Dense n= 0.240 P2= 2.20"
3.9	380	0.0	0100	1.61		Shallow Concentrated Flow,
10	1 4 6		0400	0.00		Unpaved Kv= 16.1 fps
1.2	146	0.0	0100	2.03		Shallow Concentrated Flow,
2.9	774			4.50		Paved Kv= 20.3 fps Direct Entry, Pipe Flow
			tal	4.00		
39.4	1,450	10	otal			

Summary for Subcatchment 3A-II: DA #3A-II

Runoff = 105.36 cfs @ 11.96 hrs, Volume= 5.695 af, Depth= 4.57"

Area	(ac)	CN	Desc	cription		
0.	000	74	>75%	% Grass co	over, Good	, HSG C
3.	345	80	>75%	% Grass co	over, Good	, HSG D
0.	000	98	Pave	ed parking	HSG C	
11.	593			ed parking		
0.	000	96	Grav	el surface	, HSG C	
0.	000			el surface	,	
0.	000	77	Woo	ds, Good,	HSG D	
14.	938	94	Weig	ghted Aver	age	
3.	345		22.3	9% Pervio	us Area	
11.	593		77.6	1% Imperv	vious Area	
Тс	Length		ope	Velocity	Capacity	Description
(min)	(feet) (1	ft/ft)	(ft/sec)	(cfs)	
1.6	100	0.0	150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
0.7	100	0.0	150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
2.3	200) Tot	tal, Ir	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 3A-III: DA #3A-III

Runoff = 13.24 cfs @ 11.97 hrs, Volume= 0.656 af, Depth= 3.42"

A	rea (ac	c) Cl	N Des	cription		
	0.00	0 7	4 >75	% Grass co	over, Good,	HSG C
	1.91	88	0 >75 ^o	% Grass co	over, Good,	HSG D
	0.00	09		ed parking		
	0.384	49		ed parking		
	0.00			vel surface	,	
	0.00			vel surface	,	
	0.00	0 7	7 Woo	ods, Good,	HSG D	
	2.30	28	3 Wei	ghted Aver	age	
	1.91	8	83.3	2% Pervio	us Area	
	0.384	4	16.6	8% Imper	∕ious Area	
		ength	Slope	Velocity	Capacity	Description
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1	1.6	100	0.0150	1.02		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.20"
3	3.9	860	0.0330	3.69		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
5	5.5	960	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment 3B: DA #3B

Runoff = 28.27 cfs @ 12.13 hrs, Volume= 2.172 af, Depth= 3.52"

A	Area ((ac)	CN	Desc	cription		
	0.0	000	74	>75%	6 Grass co	over, Good,	, HSG C
	5.9	920	80			over, Good,	, HSG D
	-	000	98		ed parking		
		432	98		ed parking		
	0.0	000	96		el surface	,	
		055	96		el surface	,	
	0.0	000	77	Woo	ds, Good,	HSG D	
		407	84		ghted Aver	•	
		975			7% Pervio		
	1.4	432		19.3	3% Imperv	vious Area	
	Тс	Lengtł	า 5	Slope	Velocity	Capacity	Description
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
1	9.3	100) ().	0150	0.09		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.20"
	1.1	130) 0.	0150	1.97		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
2	0.4	230) То	otal			

Summary for Pond B-5: Bioretention B-5

Inflow = 14.3 Outflow = 12.9 Primary = 12.9	0 cfs @ 11 5 cfs @ 11 5 cfs @ 11	61% Impervious I.65 hrs, Volun I.89 hrs, Volun I.89 hrs, Volun I.00 hrs, Volun	ne= 3.9 ne= 3.7 ne= 3.7	n = 3.15" for 100-yr event 923 af 733 af, Atten= 9%, Lag= 14.3 min 733 af 000 af						
	Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 741.94' @ 12.43 hrs Surf.Area= 19,162 sf Storage= 25,369 cf									
Plug-Flow detention tir Center-of-Mass det. tir				o of inflow)						
Volume Invert	Avail.Stor	age Storage	Description							
#1 740.50'		<u> </u>		tic) Listed below (Recalc)	_					
			0	, , , ,						
	.Area	Inc.Store	Cum.Store							
(feet)	sq-ft)	(cubic-feet)	(cubic-feet)							
740.50 1	5,980	0	0							
743.00 2	1,490	46,838	46,838							
Device Routing	Invert	Outlet Device:	S							
#1 Primary	737.00'	18.0" Round								
				e headwall, Ke= 0.500						
				/ 736.00' S= 0.0059 '/' Cc= 0.900						
			w Area= 1.77 s							
#2 Device 1	741.00'		Horiz. Grate							
			r flow at low he							
#3 Secondary	742.50'	10.0' long Sha	arp-Crested Re	ectangular Weir 2 End Contraction(s)						
Primary OutFlow Max=12.33 cfs @ 11.89 hrs HW=741.63' TW=738.49' (Dynamic Tailwater) 1=Culvert (Outlet Controls 12.33 cfs @ 6.98 fps) 2=Grate (Passes 12.33 cfs of 13.00 cfs potential flow) Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=740.50' TW=0.00' (Dynamic Tailwater)										

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=740.50' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Proposed Conditions III

Surf S

5,000

10,000

15,000

20,000

25,000

Storage (cubic-feet)

30,000

35,000

40,000

45,000

Ó

Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge 743 Total Primary Secondary Sharp-Crested Rectangular Weir Elevation (feet) 742 Grate 741 2 6 12 14 1 Discharge (cfs) 4 8 10 18 20 22 24 26 Ò 16 Pond B-5: Bioretention B-5 Stage-Area-Storage Surface/Horizontal/Wetted Area (sq-ft) 8 000 10.000 12,000 14,000 2,000 4,000 6,000 16,000 18,000 20,000 0 Surface 743 Storage Elevation (feet) 742 741

Pond B-5: Bioretention B-5

Type II 24-hr 100-yr Rainfall=5.27" Page 64

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 65

Stage-Discharge for Pond B-5: Bioretention B-5

Elevation (feet)	Discharge (cfs)	Primary (cfs)	Secondary (cfs)
740.50	0.00	0.00	0.00
740.55	0.00	0.00	0.00
740.60 740.65	0.00	0.00	0.00
740.65	0.00 0.00	0.00 0.00	0.00 0.00
740.75	0.00	0.00	0.00
740.80	0.00	0.00	0.00
740.85 740.90	0.00 0.00	0.00 0.00	0.00 0.00
740.90	0.00	0.00	0.00
741.00	0.00	0.00	0.00
741.05	0.29	0.29	0.00
741.10 741.15	0.83 1.52	0.83 1.52	0.00 0.00
741.13	2.34	2.34	0.00
741.25	3.27	3.27	0.00
741.30	4.30	4.30	0.00
741.35 741.40	5.42 6.62	5.42 6.62	0.00 0.00
741.45	7.90	7.90	0.00
741.50	9.25	9.25	0.00
741.55 741.60	10.67 12.16	10.67 12.16	0.00 0.00
741.65	13.71	13.71	0.00
741.70	14.27	14.27	0.00
741.75 741.80	14.35 14.44	14.35 14.44	0.00 0.00
741.80	14.44	14.44	0.00
741.90	14.60	14.60	0.00
741.95	14.69	14.69	0.00
742.00 742.05	14.77 14.85	14.77 14.85	0.00 0.00
742.10	14.93	14.93	0.00
742.15	15.01	15.01	0.00
742.20 742.25	15.09 15.17	15.09 15.17	0.00 0.00
742.30	15.25	15.25	0.00
742.35	15.33	15.33	0.00
742.40 742.45	15.41	15.41	0.00
742.45	15.49 15.57	15.49 15.57	0.00 0.00
742.55	16.01	15.65	0.37
742.60	16.75	15.72	1.03
742.65 742.70	17.69 18.79	15.80 15.88	1.89 2.91
742.75	20.02	15.95	4.07
742.80	21.37	16.03	5.34
742.85 742.90	22.83 24.38	16.10 16.18	6.72 8.21
742.90	26.04	16.25	9.78
743.00	27.77	16.33	11.45

Proposed Conditions IIITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 66

Stage-Area-Storage for Pond B-5: Bioretention B-5

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
(feet)	(sq-ft)	(cubic-feet)
740.50	15,980	0
740.55	16,090	802
740.60	16,200	1,609
740.65	16,311	2,422
740.70	16,421	3,240
740.75	16,531	4,064
740.80	16,641	4,893
740.85	16,751	5,728
740.90	16,862	6,568
740.95	16,972	7,414
741.00	17,082	8,266
741.05	17,192	9,122
741.10	17,302	9,985
741.15	17,413	10,853
741.20	17,523	11,726
741.25	17,633	12,605
741.30	17,743	13,489
741.35	17,853	14,379
741.40	17,964	15,275
741.45	18,074	16,176
741.50	18,184	17,082
741.55	18,294	17,994
741.60	18,404	18,911
741.65	18,515	19,834
741.70 741.75 741.80 741.85 741.90 741.95 742.00 742.05 742.10 742.15 742.20 742.25 742.30	18,625 18,735 18,845 19,066 19,176 19,286 19,396 19,506 19,617 19,727 19,837 19,947	20,763 21,697 22,636 23,581 24,532 25,488 26,450 27,417 28,389 29,367 30,351 31,340 32,334
742.35	20,057	33,335
742.40	20,168	34,340
742.45	20,278	35,351
742.55	20,388	36,368
742.60	20,498	37,390
742.65	20,608	38,418
742.65	20,719	39,451
742.70	20,829	40,490
742.75	20,939	41,534
742.80	21,049	42,584
742.85	21,159	43,639
742.90	21,270	44,700
742.95	21,380	45,766
743.00	21,490	46,838

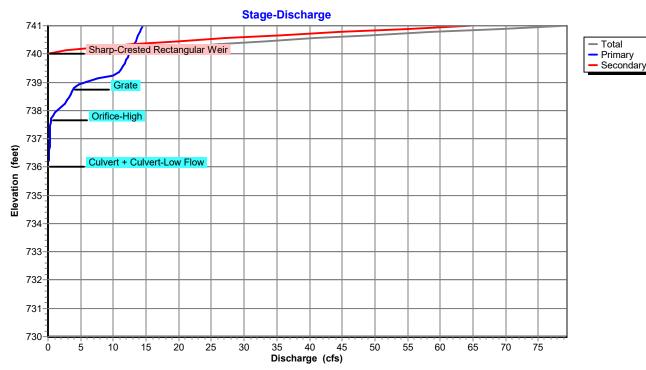
Proposed Conditions III Type Prepared by Pinewoods Engineering, P.C. HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Summary for Pond P-2: Wet Pond P-2

Inflow Area =	17.240 ac, 69.47% Impervio	us, Inflow Depth = 4.29" for 100-yr event
Inflow =	116.26 cfs @ 11.96 hrs, Volu	ume= 6.161 af
Outflow =	13.66 cfs @ 12.19 hrs, Volu	ume= 6.050 af, Atten= 88%, Lag= 13.4 min
Primary =	12.57 cfs @ 12.19 hrs, Volu	ume= 6.029 af
Secondary =	1.08 cfs @ 12.19 hrs, Volu	ıme= 0.020 af

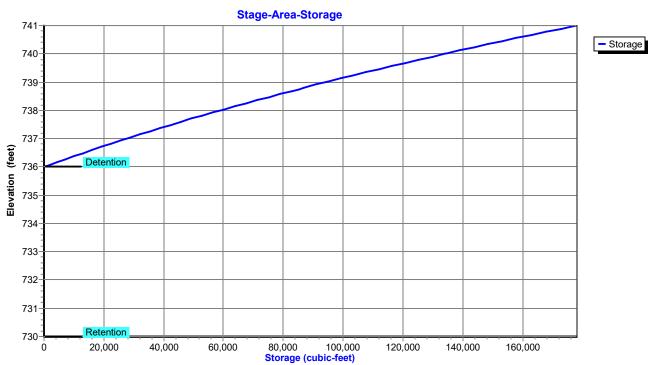
Routing by Dyn-Stor-Ind method, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs Peak Elev= 740.07' @ 12.19 hrs Surf.Area= 61,080 sf Storage= 136,630 cf

Plug-Flow detention time= 478.7 min calculated for 6.050 af (98% of inflow) Center-of-Mass det. time= 466.8 min (1,267.9 - 801.1)


Volume	Invert	Avail.Sto	orage	Storage Description	n	
#1	730.00'		0 cf	Retention (Irregul	ar) Listed below (F	Recalc)
	700.001			46,278 cf Overall		
#2	736.00'	177,8		Detention (Irregul		Recalc)
		177,8	73 cf	Total Available Sto	orage	
Elevatio	on Surf	.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et) (sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
730.0	00	3,490	498.0	0	0	3,490
734.5	50	8,488	612.0	26,131	26,131	13,865
736.0			800.0	20,147	46,278	35,016
Elevatio	on Surf	.Area F	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee		sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
736.0			<u>(1001)</u> 957.0	0	0	25,870
741.0			082.0	177,873	177,873	46,783
741.0		0,200 1,	002.0	111,010	111,010	40,100
Device	Routing	Invert	Outl	et Devices		
#1	Primary	736.00'	24.0	" Round Culvert		
	·		L= 2	20.0' CPP, end-se	ction conforming t	o fill, Ke= 0.500
			Inlet	/ Outlet Invert= 736	8.00' / 735.17' S=	0.0038 '/' Cc= 0.900
				.025 Corrugated m		3.14 sf
#2	Device 1	738.75'		" W x 24.0" H 9° Gi		
				ted to weir flow at lo		
#3	Secondary	740.00'				leir 2 End Contraction(s)
#4	Device 1	736.00'	-	Round Culvert-Lo	-	
				5.0' CPP, projectir		
						-0.0667 '/' Cc= 0.900
	D · · · ·			.012, Flow Area= 0		
#5	Device 1	737.65'		" W x 6.0" H Vert. (•	0.600
			Limi	ted to weir flow at lo	w heads	

Primary OutFlow Max=12.57 cfs @ 12.19 hrs HW=740.06' TW=0.00' (Dynamic Tailwater)

1=Culvert (Barrel Controls 12.57 cfs @ 4.00 fps)
 2=Grate (Passes < 20.71 cfs potential flow)
 4=Culvert-Low Flow (Passes < 0.65 cfs potential flow)
 5=Orifice-High (Passes < 5.31 cfs potential flow)


5-Office-fligh (Fasses < 5.51 cls potential how)

Secondary OutFlow Max=1.06 cfs @ 12.19 hrs HW=740.06' TW=0.00' (Dynamic Tailwater) -3=Sharp-Crested Rectangular Weir (Weir Controls 1.06 cfs @ 0.83 fps)

Pond P-2: Wet Pond P-2

Proposed Conditions IIITypePrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Pond P-2: Wet Pond P-2

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Proposed Conditions - III Type II 24-hr 100-yr Rainfall=5.27" Printed 9/29/2022 Page 70

Stage-Discharge for Pond P-2: Wet Pond P-2

Elevation	Discharge	Primary	Secondary	Elevation	Discharge	Primary	Secondary
(feet)	(cfs)	(cfs)	(cfs)	(feet)	(cfs)	(cfs)	(cfs)
730.00	0.00	0.00	0.00	737.65	0.40	0.40	0.00
730.15	0.00	0.00	0.00	737.80	0.70	0.70	0.00
730.30	0.00	0.00	0.00	737.95	1.23	1.23	0.00
730.45	0.00	0.00	0.00	738.10	1.91	1.91	0.00
730.60	0.00	0.00	0.00	738.25	2.56	2.56	0.00
730.75	0.00	0.00	0.00	738.40	3.02	3.02	0.00
730.90	0.00	0.00	0.00	738.55	3.41	3.41	0.00
			0.00	738.70	3.74	3.74	
731.05	0.00	0.00					0.00
731.20	0.00	0.00	0.00	738.85	4.31	4.31	0.00
731.35	0.00	0.00	0.00	739.00	5.65	5.65	0.00
731.50	0.00	0.00	0.00	739.15	8.00	8.00	0.00
731.65	0.00	0.00	0.00	739.30	10.78	10.78	0.00
731.80	0.00	0.00	0.00	739.45	11.16	11.16	0.00
731.95	0.00	0.00	0.00	739.60	11.52	11.52	0.00
732.10	0.00	0.00	0.00	739.75	11.87	11.87	0.00
732.25	0.00	0.00	0.00	739.90	12.21	12.21	0.00
732.40	0.00	0.00	0.00	740.05	13.27	12.54	0.73
732.55	0.00	0.00	0.00	740.20	18.70	12.86	5.84
732.70	0.00	0.00	0.00	740.35	26.67	13.18	13.49
732.85	0.00	0.00	0.00	740.50	36.49	13.48	23.01
733.00	0.00	0.00	0.00	740.65	47.83	13.78	34.05
733.15	0.00	0.00	0.00	740.80	60.50	14.08	46.42
733.30	0.00	0.00	0.00	740.95	74.35	14.37	59.98
733.45	0.00	0.00	0.00				
733.60	0.00	0.00	0.00				
733.75	0.00	0.00	0.00				
733.90	0.00	0.00	0.00				
734.05	0.00	0.00	0.00				
734.20	0.00	0.00	0.00				
734.35	0.00	0.00	0.00				
734.50	0.00	0.00	0.00				
734.65	0.00	0.00	0.00				
734.80	0.00	0.00	0.00				
734.95	0.00	0.00	0.00				
735.10	0.00	0.00	0.00				
735.25	0.00	0.00	0.00				
735.40	0.00	0.00	0.00				
735.55	0.00	0.00	0.00				
735.70	0.00	0.00	0.00				
735.85	0.00	0.00	0.00				
736.00							
	0.00	0.00	0.00				
736.15	0.04	0.04	0.00				
736.30	0.12	0.12	0.00				
736.45	0.18	0.18	0.00				
736.60	0.22	0.22	0.00				
736.75	0.25	0.25	0.00				
736.90	0.28	0.28	0.00				
737.05	0.31	0.31	0.00				
737.20	0.34	0.34	0.00				
737.35	0.36	0.36	0.00				
737.50	0.38	0.38	0.00				
-		_					

Proposed Conditions IIIType II 24-hrPrepared by Pinewoods Engineering, P.C.HydroCAD® 10.10-4a s/n 09020 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond P-2: Wet Pond P-2

	<i></i>		A <i>i</i>
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
730.00	0	737.65	47,612
730.15	0	737.80	52,448
730.30	0	737.95	57,372
730.45	0	738.10	62,385
730.60	0 0	738.25	67,487
730.75 730.90	0	738.40 738.55	72,680 77,965
731.05	0	738.70	83,341
731.20	0	738.85	88,810
731.35	ů 0	739.00	94,372
731.50	Ő	739.15	100,029
731.65	0 0	739.30	105,782
731.80	0	739.45	111,630
731.95	0	739.60	117,575
732.10	0	739.75	123,617
732.25	0	739.90	129,758
732.40	0	740.05	135,998
732.55	0	740.20	142,339
732.70	0	740.35	148,779
732.85	0	740.50	155,322
733.00	0	740.65	161,967
733.15	0	740.80	168,714
733.30	0	740.95	175,566
733.45 733.60	0 0		
733.75	0		
733.90	0		
734.05	0		
734.20	Õ		
734.35	0		
734.50	0		
734.65	0		
734.80	0		
734.95	0		
735.10	0		
735.25	0		
735.40	0		
735.55	0		
735.70 735.85	0 0		
736.00	0		
736.15	3,920		
736.30	7,919		
736.45	11,998		
736.60	16,159		
736.75	20,401		
736.90	24,725		
737.05	29,133		
737.20	33,624		
737.35	38,201		
737.50	42,863		
		I	

Summary for Link 3AR-I: 3A Reach

Inflow Are	ea =	17.240 ac, 69.47% Impervious, Inflow Depth > 4.20" for 100-yr event
Inflow	=	12.57 cfs @ 12.19 hrs, Volume= 6.029 af
Primary	=	12.57 cfs @ 12.26 hrs, Volume= 6.029 af, Atten= 0%, Lag= 4.2 min

Primary outflow = Inflow delayed by 3.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AR-II: 3A Reach

Inflow Are	ea =	48.574 ac, 49.82% Impervious, Inflow Depth > 3.96" for 100-yr event
Inflow	=	98.15 cfs @ 12.35 hrs, Volume= 16.009 af
Primary	=	97.88 cfs @ 12.37 hrs, Volume= 16.009 af, Atten= 0%, Lag= 1.6 min

Primary outflow = Inflow delayed by 1.6 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3AT: DA #3A Total

Inflow Are	a =	48.574 ac, 49.82% Impervious, Inflow Depth > 3.96" for 100-yr event
Inflow	=	98.15 cfs @ 12.35 hrs, Volume= 16.009 af
Primary	=	98.15 cfs @ 12.35 hrs, Volume= 16.009 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BP: Bypass

Inflow Area =	14.938 ac, 77.61% Impervious, Inflow D	Depth = 4.57" for 100-yr event
Inflow =	105.36 cfs @ 11.96 hrs, Volume=	5.695 af
Primary =	14.30 cfs @ 11.65 hrs, Volume=	3.923 af, Atten= 86%, Lag= 0.0 min
Secondary =	91.06 cfs @ 11.96 hrs, Volume=	1.771 af

Primary outflow = Inflow below 14.30 cfs, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link 3BR: 3B Reach

Inflow Are	a =	7.407 ac, 19.33% Impervious, Inflow Depth = 3.55" for 100-yr event
Inflow	=	29.10 cfs @ 12.14 hrs, Volume= 2.192 af
Primary	=	28.81 cfs @ 12.28 hrs, Volume= 2.192 af, Atten= 1%, Lag= 8.5 min

Primary outflow = Inflow delayed by 8.5 min, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Summary for Link DP-3: DP #3 - Rush Crk

Inflow Are	a =	55.981 ac, 45.79% Impervious, Inflow Depth > 3.90" for 100-yr event
Inflow	=	123.65 cfs @ 12.33 hrs, Volume= 18.201 af
Primary	=	123.65 cfs @ 12.33 hrs, Volume= 18.201 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-80.00 hrs, dt= 0.05 hrs

Extreme Precipitation Tables

Northeast Regional Climate Center

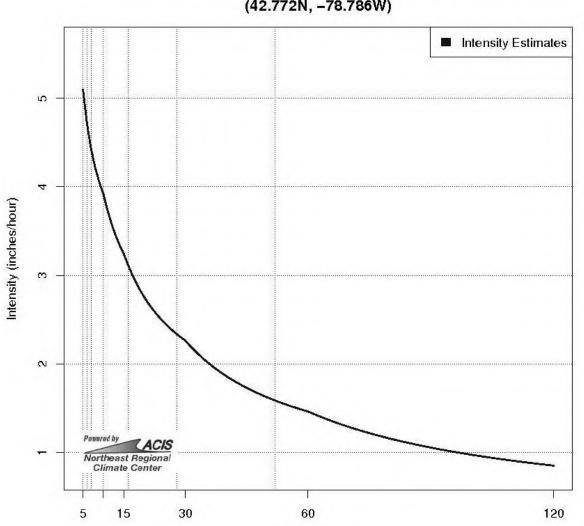
Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	No
State	New York
Location	
Longitude	78.786 degrees West
Latitude	42.772 degrees North
Elevation	0 feet
Date/Time	Thu, 26 May 2022 11:42:47 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.42	0.51	0.68	0.84	0.97	1yr	0.73	0.95	1.08	1.28	1.57	1.84	2.19	1yr	1.63	2.10	2.55	3.07	3.56	1yr
2yr	0.31	0.48	0.60	0.81	0.99	1.15	2yr	0.86	1.12	1.27	1.54	1.83	2.20	2.53	2yr	1.95	2.44	2.89	3.45	3.96	2yr
5yr	0.37	0.57	0.71	0.97	1.24	1.43	5yr	1.07	1.40	1.58	1.91	2.28	2.70	3.10	5yr	2.39	2.98	3.49	4.13	4.74	5yr
10yr	0.43	0.65	0.81	1.13	1.46	1.70	10yr	1.26	1.66	1.87	2.25	2.70	3.15	3.60	10yr	2.79	3.47	4.03	4.73	5.44	10yr
25yr	0.51	0.78	0.97	1.39	1.83	2.13	25yr	1.58	2.09	2.35	2.81	3.37	3.87	4.41	25yr	3.42	4.24	4.87	5.65	6.52	25yr
50yr	0.59	0.90	1.12	1.61	2.16	2.53	50yr	1.87	2.48	2.78	3.31	3.99	4.51	5.13	50yr	3.99	4.93	5.62	6.48	7.49	50yr
100yr	0.68	1.03	1.29	1.87	2.56	3.01	100yr	2.21	2.95	3.31	3.92	4.73	5.27	5.98	100yr	4.67	5.75	6.49	7.42	8.60	100yr
200yr	0.79	1.19	1.50	2.18	3.04	3.58	200yr	2.62	3.50	3.94	4.63	5.60	6.17	6.96	200yr	5.46	6.70	7.49	8.51	9.88	200yr
500yr	0.97	1.43	1.85	2.68	3.81	4.51	500yr	3.29	4.41	4.97	5.80	7.02	7.58	8.53	500yr	6.71	8.20	9.08	10.20	11.87	500yr

Lower Confidence Limits


	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.60	0.73	0.80	1yr	0.63	0.78	0.87	1.10	1.43	1.62	1.96	1yr	1.43	1.88	2.32	2.90	3.36	1yr
2yr	0.30	0.46	0.57	0.77	0.96	1.10	2yr	0.82	1.08	1.21	1.47	1.75	2.14	2.48	2yr	1.90	2.38	2.82	3.37	3.86	2yr
5yr	0.34	0.52	0.65	0.89	1.13	1.30	5yr	0.97	1.27	1.45	1.76	2.08	2.51	2.90	5yr	2.23	2.79	3.28	3.88	4.46	5yr
10yr	0.37	0.57	0.71	0.99	1.28	1.44	10yr	1.10	1.41	1.66	1.99	2.34	2.82	3.26	10yr	2.50	3.13	3.68	4.32	4.99	10yr
25yr	0.42	0.64	0.80	1.14	1.51	1.71	25yr	1.30	1.67	1.95	2.32	2.74	3.31	3.81	25yr	2.93	3.67	4.26	4.99	5.80	25yr
50yr	0.46	0.71	0.88	1.26	1.70	1.92	50yr	1.47	1.87	2.22	2.61	3.10	3.73	4.29	50yr	3.31	4.13	4.78	5.56	6.51	50yr
100yr	0.51	0.77	0.97	1.40	1.92	2.15	100yr	1.66	2.10	2.53	2.95	3.49	4.20	4.83	100yr	3.71	4.65	5.37	6.22	7.32	100yr
200yr	0.57	0.85	1.08	1.56	2.18	2.40	200yr	1.88	2.35	2.88	3.32	3.93	4.72	5.44	200yr	4.18	5.24	6.02	6.97	8.24	200yr
500yr	0.65	0.97	1.24	1.81	2.57	2.77	500yr	2.22	2.71	3.43	3.89	4.60	5.53	6.38	500yr	4.90	6.14	7.02	8.12	9.68	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.31	0.47	0.58	0.78	0.95	1.09	1yr	0.82	1.07	1.22	1.44	1.78	2.05	2.35	1yr	1.82	2.26	2.71	3.22	3.72	1yr
2yr	0.33	0.50	0.62	0.84	1.03	1.22	2yr	0.89	1.20	1.33	1.62	1.91	2.28	2.64	2yr	2.02	2.54	2.98	3.56	4.08	2yr
5yr	0.40	0.62	0.77	1.06	1.35	1.55	5yr	1.17	1.52	1.73	2.08	2.51	2.89	3.29	5yr	2.56	3.16	3.69	4.38	5.05	5yr
10yr	0.48	0.74	0.92	1.28	1.66	1.90	10yr	1.43	1.86	2.13	2.55	3.09	3.46	3.91	10yr	3.06	3.76	4.35	5.13	5.93	10yr
25yr	0.62	0.94	1.17	1.67	2.19	2.58	25yr	1.89	2.52	2.81	3.34	4.08	4.41	4.93	25yr	3.91	4.74	5.41	6.31	7.32	25yr
50yr	0.73	1.12	1.39	2.00	2.69	3.19	50yr	2.32	3.12	3.47	4.11	5.03	5.31	5.87	50yr	4.70	5.65	6.38	7.36	8.59	50yr
100yr	0.88	1.33	1.67	2.41	3.31	3.95	100yr	2.85	3.86	4.28	5.05	6.20	6.39	6.98	100yr	5.65	6.72	7.53	8.61	10.06	100yr
200yr	1.06	1.59	2.02	2.92	4.07	4.88	200yr	3.51	4.77	5.28	6.21	7.62	7.70	8.31	200yr	6.81	7.99	8.90	10.06	11.79	200yr
500yr	1.35	2.01	2.59	3.76	5.35	6.45	500yr	4.62	6.31	6.97	8.14	10.04	9.86	10.46	500yr	8.72	10.06	11.07	12.36	14.52	500yr

Northeast Regional Climate Center

Intensity Frequency Duration – 10yr (42.772N, –78.786W)

Duration (minutes)

Time (mins)	Intensity (in/hr)
5	5.10
5 6*	4.71
7*	4.42
8*	4.21
9*	4.05
10	3.92
11*	3.73
12*	3.58
13*	3.45
14*	3.34
15	3.24
16*	3.12
17*	3.01
18*	2.91
19*	2.83
20*	2.75
21*	2.68
22*	2.62
23*	2.56

24*	• • •
) 51
	2.51
25*	2.46
26*	2.41
27*	2.37
28*	2.33
29*	2.30
29	
30	2.26
31*	2.21
32*	2.16
33*	2.12
34*	2.08
35*	2.03
36*	2.00
37*	1.96
38*	1.93
39*	1.89
40*	1.86
41*	1.83
42*	1.81
43*	1.78
44*	1 75
	1.75
45*	1.73
46*	1.71
47*	1.68
48*	1.66
49*	1.64
50*	1.62
51*	1.60
21.	1.00
52*	1.59
53*	1.57
54*	1.55
55*	1.53
	1.52
56*	
57*	1.50
	1.50
58*	1.49
59*	1.48
60	1.46
61*	1.44
62*	1.42
63*	1.40
	1.40
64*	1.39
01	
65*	
65*	1.37
	1.37
66*	1.37 1.35
	1.37
66* 67*	1.37 1.35 1.33
66* 67* 68*	1.37 1.35 1.33 1.32
66* 67* 68*	1.37 1.35 1.33 1.32
66* 67* 68* 69*	1.37 1.35 1.33 1.32 1.30
66* 67* 68* 69*	1.37 1.35 1.33 1.32 1.30
66* 67* 68* 69* 70*	1.37 1.35 1.33 1.32 1.30 1.29
66* 67* 68* 69*	1.37 1.35 1.33 1.32 1.30
66* 67* 68* 69* 70* 71*	1.37 1.35 1.33 1.32 1.30 1.29 1.27
66* 67* 68* 69* 70*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26
66* 67* 68* 69* 70* 71* 72*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26
66* 67* 68* 69* 70* 71* 72* 73*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26 1.24
66* 67* 68* 69* 70* 71* 72* 73*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26 1.24
66* 67* 68* 69* 70* 71* 72* 73* 74*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26 1.24 1.23
66* 67* 68* 69* 70* 71* 72* 73* 74*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26 1.24 1.23
66* 67* 68* 69* 70* 71* 72* 73* 74* 75*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26 1.24 1.23 1.22
66* 67* 68* 69* 70* 71* 72* 73* 74* 75*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26 1.24 1.23 1.22
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26 1.24 1.23 1.22 1.20
66* 67* 68* 69* 70* 71* 72* 73* 74* 75*	1.37 1.35 1.33 1.32 1.30 1.29 1.27 1.26 1.24 1.23 1.22
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 $
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16 \\ 1.15 \\ $
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16 \\ 1.15 \\ 1.13 \\ $
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16 \\ 1.15 \\ 1.13 \\ 1.12$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16 \\ 1.15 \\ 1.13 \\ 1.12$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 84*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16 \\ 1.15 \\ 1.13 \\ 1.12 \\ 1.11$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 84*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16 \\ 1.15 \\ 1.13 \\ 1.12 \\ 1.11$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 84* 85*	$1.37 \\ 1.35 \\ 1.33 \\ 1.32 \\ 1.30 \\ 1.29 \\ 1.27 \\ 1.26 \\ 1.24 \\ 1.23 \\ 1.22 \\ 1.20 \\ 1.19 \\ 1.18 \\ 1.17 \\ 1.16 \\ 1.15 \\ 1.13 \\ 1.12 \\ 1.11 \\ 1.10 $
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 84* 85*	$\begin{array}{c} 1.37\\ 1.35\\ 1.33\\ 1.32\\ 1.30\\ 1.29\\ 1.27\\ 1.26\\ 1.24\\ 1.23\\ 1.22\\ 1.20\\ 1.19\\ 1.18\\ 1.17\\ 1.16\\ 1.15\\ 1.13\\ 1.12\\ 1.11\\ 1.10\end{array}$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 84* 85* 86*	$\begin{array}{c} 1.37\\ 1.35\\ 1.33\\ 1.32\\ 1.30\\ 1.29\\ 1.27\\ 1.26\\ 1.24\\ 1.23\\ 1.22\\ 1.20\\ 1.19\\ 1.18\\ 1.17\\ 1.16\\ 1.15\\ 1.13\\ 1.12\\ 1.11\\ 1.10\\ 1.09\end{array}$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 84* 85* 86*	$\begin{array}{c} 1.37\\ 1.35\\ 1.33\\ 1.32\\ 1.30\\ 1.29\\ 1.27\\ 1.26\\ 1.24\\ 1.23\\ 1.22\\ 1.20\\ 1.19\\ 1.18\\ 1.17\\ 1.16\\ 1.15\\ 1.13\\ 1.12\\ 1.11\\ 1.10\end{array}$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 83* 84* 85* 86* 87*	$\begin{array}{c} 1.37\\ 1.35\\ 1.33\\ 1.32\\ 1.30\\ 1.29\\ 1.27\\ 1.26\\ 1.24\\ 1.23\\ 1.22\\ 1.20\\ 1.19\\ 1.18\\ 1.17\\ 1.16\\ 1.15\\ 1.13\\ 1.12\\ 1.11\\ 1.10\\ 1.09\\ 1.08\end{array}$
66* 67* 68* 69* 70* 71* 72* 73* 74* 75* 76* 77* 78* 79* 80* 81* 82* 83* 84* 85* 86*	$\begin{array}{c} 1.37\\ 1.35\\ 1.33\\ 1.32\\ 1.30\\ 1.29\\ 1.27\\ 1.26\\ 1.24\\ 1.23\\ 1.22\\ 1.20\\ 1.19\\ 1.18\\ 1.17\\ 1.16\\ 1.15\\ 1.13\\ 1.12\\ 1.11\\ 1.10\\ 1.09\end{array}$

89*	1.06		
90*	1.05		
91*	1.05		
92*	1.04		
93*	1.03		
94*	1.02		
95*	1.01		
96*	1.00		
97*	1.00		
98*	0.99		
99*	0.98		
100*	0.97		
101*	0.97		
102*	0.96		
103*	0.95		
104*	0.95		
105*	0.94		
106*	0.93		
107*	0.93		
108*	0.92		
109*	0.91		
110*	0.91		
111*	0.90		
112*	0.89		
113*	0.89		
114*	0.88		
115*	0.88		
116*	0.87		
117*	0.87		
118*	0.86		
119*	0.86		
120	0.85		
*values	for noted rows	are calculated	estimates

APPENDIX E

General Permit for Construction Stormwater Discharges from Construction Activities – GP-0-20-001

Operation & Maintenance Manual

Permanent Stormwater Management Facilities;

OPERATION & MAINTENANCE (O&M) MANUAL

For: New Bills Stadium

Located At:	Towns of Orchard Park & Hamburg Erie County, New York
Prepared For:	Buffalo Bills 1 Bills Drive Orchard Park, New York 14127
Prepared By:	Pinewoods Engineering, PC 42 Aston Villa N. Chili, NY 14514

I. Compliance with Stormwater Facility Maintenance Requirements

All property owners are responsible for ensuring that stormwater facilities installed on their property are properly maintained and that they function as designed. For the New Bills Stadium, the following entity is responsible for the long-term operation and maintenance of post-development, permanent stormwater management facilities:

	Entity Name:	Buffalo Bills
	Contact:	Kathryn D'Angelo, Assistance General Counsel
	Address:	1 Bills Drive, Orchard Park, NY 14127
_	Telephone:	(716) 312-8607
_	E-Mail:	Kathryn.d'angelo@bills.nfl.net

II. On-Going Preventative Maintenance Measures

On-going preventative maintenance should be done to prevent pollutants from entering facilities in the first place. Common pollutants include: sediment, trash & debris, chemicals, dog wastes, runoff from stored materials, and illicit discharges into the storm drainage system. These pollutants may be prevented from entering the stormwater facility by:

- Keeping the property, street and gutter, and parking lots free of trash, debris and lawn clippings.
- Ensure the proper disposal of hazardous wastes and chemicals.
- Plan lawn care to minimize the use of chemicals and pesticides.
- Sweep paved surfaces and put the sweeping back on the lawn.
- Be aware of leaked automobile fluids. Use absorbents such as cat litter or rags to soak up drippings and properly dispose of.
- Re-vegetate disturbed and bare areas to maintain vegetative stabilization.
- Clean-out the upstream components of the storm drainage system, including inlets, storm sewers and outfalls.
- Avoid storing material outdoors (including landscaping materials) unless properly protected from runoff.

III. Safety Procedures During Facility Inspections

Keep safety considerations at the forefront of inspection procedures at all times. Likely hazards should be anticipated and avoided. Never enter a confined space (ie. Outlet structure, manhole, etc.) without proper training or equipment and at least one additional person present. If a toxic or flammable substance is discovered, leave the immediate area and contact 9-1-1. Vertical drops or steep slopes may be encountered in areas located within and around the facility. Avoid walking on top of retaining walls, outfalls, headwalls or other structures. Maintenance personnel should be qualified to perform this work.

IV. Inspection Stormwater Management Facilities

The quality of stormwater entering the waters of the state relies heavily on the proper operation and maintenance of permanent best management practices. Stormwater management facilities must be

periodically inspected to ensure that they function as designed. The inspection will determine the appropriate maintenance that is required for the facility.

V. Inspection Procedures

All stormwater management facilities are required to be inspected by a qualified individual at a minimum of once per year. A qualified individual is one who is familiar with the site, the facility components and this manual. Inspections should follow the inspection guidance found in the SMDM, Chapter 5 & 6 for the specific type of facility. It is recommended the person conducting the inspection activities complete the appropriate inspection report found in Appendix G of the SMDM for the specific type of facility and that those reports be stored with this manual.

VI. Maintaining Stormwater Management Facilities

Stormwater management facilities require maintenance to ensure that they operate correctly and as designed. Routine maintenance performed on a frequently scheduled basis, can help avoid more costly rehabilitative maintenance. Typically, maintenance is separated into three categories:

- Routine Work Activities normally performed at numerous and varying times during the year.
- Restorative Work Small scale maintenance performed to address specific operational problems completed with a small crew using minor tools or small equipment.
- Rehabilitative Work Large scale maintenance and major improvements to address failures. May
 required an engineering design with construction plans and jurisdictional review and approval.

VII. Facility Specific Standard Operation Procedures for Inspection & Maintenance

A. Stormwater Management Pond

Features:

- Forebay shallow micro-pool located at the inflow point(s) of the basin. Typically, this is designed to be submerged below the permanent water surface elevation.
- Deep Pool separated by a barrier from the forebay, a deeper micro-pool located at the outflow point(s). Typically, this is designed to be submerged below the permanent water surface elevation.
- Outlet Structure This consists of a grated-top catch basin, with an inflow pipe(s) from the pond and sometimes orifices or weirs on the pond side and a pipe outlet (discharge) away from the pond.
- Emergency Spillway This consists of a rip-rap covered weir typically at the top of the pond for overflow discharges.

Maintenance Sediment Mowing/ Trash & Erosion/ Overgrown Standing Structure Rutting/ Removal/ Weed Debris Vegetation Water/ Repair Activity: Removal Pests/Algae Outlet Control Removal Bare Earth Control **Component:** Cleaning **Inflow Points** Х Х Х Х Х Forebay Х Х Х Х Х Х Spillway/Channel Х Х Х Х **Between Forebay** & Deep Pool Х Х Х Х Deep Pool Х Outlet Structure Х Х Х Х Х Х Х Emergency Spillway **Inside Pond Banks** Х Х Х Х Outside Х Х Embankment

Typical Maintenance Matrix

Routine Maintenance Activities:

Mowing

Frequency: Twice Annually, or as needed

Mow occasionally to limit unwanted vegetation and to improve the overall appearance. Native vegetation should be mowed to a height of 4-6 inches tall. Grass clippings should be collected and disposed of properly.

Trash/Debris Removal

Frequency: Twice Annually, or as needed, performed prior to mowing operations.

Trash and debris should be removed from the facility to minimize outlet clogging and to improve aesthetics. This activity should be performed prior to mowing operations.

Outlet Works Cleaning

Frequency: Routine – after significant rainfall events or concurrently with other maintenance activities.

Debris and other materials can clog the outlet structures grate, trash rack, and orifice and weir openings. This activity must be performed anytime other maintenance activities are conducted to ensure proper operation.

Weed Control

Frequency: Routine - As needed based on inspection

Noxious weeds and other unwanted or overgrown vegetation must be treated as needed. This activity is typically performed through mechanical means (mowing/pulling).

Mosquito/Pests/Algae Treatment

Frequency: As needed

Treatment of permanent pools to control mosquitoes and undesirable pests or aquatic vegetation that can create nuisances. Contact NYSDEC for guidance on how to mitigate the specific nuisance.

Minor Maintenance Activities:

Sediment Removal

Frequency: As needed based on inspection, typically every 1-2 years.

Sediment removal is necessary to maintain the original design volume and function of the facility. Minor sediment removal can typically be addressed with shovels and smaller equipment. Removed sediments do not meet the criteria of "hazardous waste" however, these sediments are contaminated with a wide array of organic and inorganic pollutants and must be handeled with care. Sediment should be carefully removed during dry weather to prevent turbidity, further sedimentation or adverse water quality impacts. Removed sediments should be dewatered and then transported by vehicle to a proper disposal site (ie. Landfill, etc.). If necessary, restabilize any bare areas.

Erosion Repair

Frequency: As needed based on inspection

Erosion can vary in magnitude from minor repairs to embankment ruts, energy dissipaters and rilling to major bullies in the embankments and spillways. The repair of eroded areas may require the use of excavators, earthmoving equipment, riprap and erosion control blankets. All areas should be repaired in-kind and fully stabilized.

Vegetation Removal/Tree Thinning

Frequency: As necessary based on inspection

Dense stands of woody vegetation or trees can create maintenance problems within the facility. Tree roots can damage structures and invade pipes/channels thereby blocking flows. Trees growing in the basin will most likely have to be moved when sediment/dredging operations occur. All trees growing near inflows, outlet structure, emergency spillways or on embankments should be removed.

Clearing Pond Drains, Orifices and Outflows

Frequency: As necessary based on inspection

The facility contains many structures, openings and pipes that can be frequently cogged with debris. These blockages can result in a decrease in the hydraulic capacity and standing water elevation in the basin. Specialized equipment or qualified personnel may be required to clear debris from this structure.

Major Maintenance Activities:

These typically involve: large quantities of sediment removal, severe erosion involving; gullies, excessive soil displacement, settlement or holes, and structural repairs to damaged items. These maintenance activities should be performed as a frequency as needed based on inspections. These activities may require an engineer design or jurisdictional approval. Consult appropriate authorities before proceeding with these activities.

B. Bioretention Facility

Features:

- Stilling Basin a shallow micro-pool located at the inflow point(s) of the basin designed to provide pre-treatment. Typically, this pool is designed to have permanent standing water.
- Infiltration Bed this is a flat area which typically consists of specific plant materials and mulch. This surface area is designed to allow for slow infiltration to subsurface layers.
- Amended Planting Soil This is a subsurface layer under the infiltration bed that contains amended planting soil meeting certain specifications and containing void space for detention storage. This layer is designed to allow for slow infiltration to the lower layer.
- Gravel Layer This is a subsurface layer below the Amended Planting Soil layer that contain gravel and an underdrain. The gravel provides void space for detention storage. Where native soils allow, this layer is designed to infiltrate stored runoff. Runoff not infiltrated is collected in the underdrain.
- Underdrain Located in the gravel layer, this consists a very moderately sloped perforated pipe designed to capture runoff which will not be infiltrated and convey it to the discharge pipe.
- Outlet Structure This consists of a grated outlet structure which is elevated approximately 6inches above the infiltration bed and designed to pass larger storm events. It typically consists of a surface grate, serves as a connection point for underdrain, and has a pipe outlet (discharge) away from the practice.
- Emergency Spillway This consists of a rip-rap covered weir typically at the top of the practice for overflow discharges.

Maintenance Activity:	Sediment Removal/ Outlet	Mowing/ Weed Control	Trash & Debris Removal	Erosion/ Rutting/ Bare	Overgrown Vegetation Removal	Standing Water/ Pests/Algae	Structure Repair
Component:	Cleaning			Earth		Control	
Inflow Points	Х		Х	Х			Х
Stilling Basin	Х	Х	Х	Х	Х	Х	
Infiltration Bed	Х	Х	Х	Х	Х	Х	
Amended Planting							
Soil Layer							
Gravel Layer							
Underdrain	Х						
Outlet Structure	Х		Х				Х
Emergency	х		х				х
Spillway	~		~				~
Inside Facility		х	х	х	х		
Banks		Λ	^	^	^		
Outside		х	х	х	х		
Embankment		A	~	~	^		

Typical Maintenance Matrix

Stormwater Management Facilities Operation & Maintenance Manual Part of: Stormwater Pollution Prevention Plan, July 31, 2021 New Bills Stadium, Erie County By: Pinewoods Engineering, PC

Routine Maintenance Activities:

Mowing

Frequency: Twice Annually, or as needed

Mow occasionally to limit unwanted vegetation and to improve the overall appearance. Native vegetation should be mowed to a height of 2-4 inches tall. Grass clippings should be bagged to prevent potential contamination of the filter media.

Trash/Debris Removal

Frequency: Twice Annually, or as needed, performed prior to mowing operations.

Trash and debris should be removed from the facility to minimize outlet clogging and to improve aesthetics. This activity should be performed prior to mowing operations.

Outlet Works Cleaning

Frequency: Routine – after significant rainfall events or concurrently with other maintenance activities.

Debris, woody growth, and other materials can clog the outlet structures grate. This activity must be performed anytime other maintenance activities are conducted to ensure proper operation.

Weed Control

Frequency: Routine - As needed based on inspection

Undesirable vegetation can grow in and around the facility that significantly affect the performance by causing debris/sediment to accumulate, and blocking inflows and damaging the filter media and underdrain system. This includes dense shrubs, grasses and noxious weeds. The landscape elements of the facility should be maintained the same as other landscape areas. Mulch may need to be removed and replaced. Vegetation removal activity is typically performed through mechanical means (mowing/pulling).

Infiltration Rate Check

Frequency: Periodically

The infiltration rate of the infiltration bed should be checked in order to ensure proper function. Generally, the facility should drain completely within 12-hours of a storm event. If drain times exceed the 12-hour drain time then maintenance of the filter media may be required.

Underdrain System Check

Frequency: Periodically

With proper maintenance of the surface components of the facility, there should be a minimum amount of maintenance required on the underdrain system. Inspection ports or clean-outs may be used to determine if subsurface layers are retaining water.

Mosquito/Pests/Algae Treatment

Frequency: As needed

Generally, the pool of standing water is very minor. However, if treatment of permanent pools is required to control mosquitoes and undesirable pests or aquatic vegetation that can create nuisances, contact NYSDEC for guidance on how to mitigate the specific nuisance.

Minor Maintenance Activities:

Sediment Removal

Frequency: As needed based on inspection, typically every 1-2 years.

Sediment removal is necessary to ensure proper function of the filter media. Generally the top 3inches of filter media should be removed at each removal period. Additional amounts of filter media may need to be removed if deeper sections of the filter media are contaminated. New filter media will need to replace the removed filter media. All replaced filter media should meet original facility specifications. Minor sediment removal can typically be addressed with shovels, rakes, and smaller equipment. Extreme care should be taken when utilizing motorized or heavy equipment to ensure damage to the underdrain system or porosity of the subsurface soils does not occur. Removed sediments do not meet the criteria of "hazardous waste" however, these sediments are contaminated with a wide array of organic and inorganic pollutants and must be handeled with care. Sediment should be carefully removed during dry weather to prevent turbidity, further sedimentation or adverse water quality impacts. Removed sediments should be dewatered and then transported by vehicle to a proper disposal site (ie. Landfill, etc.). If necessary, restabilize any bare areas.

Erosion Repair

Frequency: As needed based on inspection

Erosion can vary in magnitude from minor repairs to embankment ruts, energy dissipaters and rilling to major bullies in the embankments and spillways. The repair of eroded areas may require the use of excavators, earthmoving equipment, riprap and erosion control blankets. Extreme care should be taken when utilizing motorized or heavy equipment to ensure damage to the underdrain system or subsurface layer's porosity does not occur. All areas should be repaired in-kind and fully stabilized.

Vegetation Removal/Tree Thinning

Frequency: As necessary based on inspection

Dense stands of woody vegetation or trees can create maintenance problems within the facility. Tree roots can damage structures and invade pipes/channels thereby blocking flows. Trees growing near the facility may drop material that could clog the subsoils. All trees growing near inflows, outlet structure, emergency spillways or on embankments should be removed.

Clearing Underdrains and Outflows

Frequency: As necessary based on inspection

The facility contains an outlet structure and underdrain system that allows treated runoff to exit the facility. These systems can develop blockages that result in a decrease in the hydraulic capacity and create standing water. Specialized equipment or qualified personnel may be required to clear debris from these structures.

Major Maintenance Activities:

These typically involve: large quantities of pollutants/sediment/filter media/landscaping material removal, severe erosion involving; gullies, excessive soil displacement, settlement or holes, and structural repairs to damaged items. These maintenance activities should be performed as a frequency as needed based on inspections. Extreme care should be taken when utilizing motorized or heavy equipment to ensure damage to the underdrain system or subsoils porosity

does not occur. These activities may require an engineer design or jurisdictional approval. Consult appropriate authorities before proceeding with these activities.

C. Grass Swales and Buffers

Features:

- Swale Bottom a shallow micro-pool located at the inflow point(s) of the basin designed to
 provide pre-treatment. Typically, this pool is designed to have permanent standing water.
- Side Slope this is a flat area which typically consists of specific plant materials and mulch. This surface area is designed to allow for slow infiltration to subsurface layers.
- Buffer Strip This is a subsurface layer under the infiltration bed that contains amended planting soil meeting certain specifications and containing void space for detention storage. This layer is designed to allow for slow infiltration to the lower layer.
- Underdrain This is a subsurface layer below the Amended Planting Soil layer that contain gravel and an underdrain. The gravel provides void space for detention storage. Where native soils allow, this layer is designed to infiltrate stored runoff. Runoff not infiltrated is collected in the underdrain.
- Level Spreader Located in the gravel layer, this consists a very moderately sloped perforated pipe designed to capture runoff which will not be infiltrated and convey it to the discharge pipe.

Maintenance Activity: Component:	Sediment Removal/ Outlet Cleaning	Mowing/ Weed Control	Trash & Debris Removal	Erosion/ Rutting/ Bare Earth	Overgrown Vegetation Removal	Structure Repair
Swale Bottom	Х		Х	Х		Х
Side Slope	Х	Х	Х	Х	Х	
Buffer Strip	Х	Х	Х	Х	Х	
Inflow Point						
Underdrain	Х					
Level Spreader	Х		Х			Х

Typical Maintenance Matrix

Routine Maintenance Activities:

Mowing

Frequency: Twice Annually, or as needed

Routine mowing of the embankments is necessary to maintain an appropriate grass height and to improve the overall appearance. Native vegetation should be mowed to a height of 4-6 inches tall. Grass clippings should be bagged to prevent potential contamination of the filter media.

Trash/Debris Removal

Frequency: Twice Annually, or as needed, performed prior to mowing operations. Trash and debris should be removed from the area to allow for proper functioning and to improve aesthetics. This activity should be performed prior to mowing operations.

Level Spreader

Frequency: Routine - As needed based on inspection

Evidence of uneven flow or localized erosion downstream of the level spreader may be an indication that flow is not evenly distributed along the length of the spreader. Areas of erosion should be repaired, filled and revegetated. Causes for the erosion should be investigated and repaired.

Weed Control

Frequency: Routine - As needed based on inspection

Undesirable vegetation can grow in and around the area and significantly affect the performance by causing debris/sediment to accumulate, damaging the filter media and underdrain system, and reducing the hydraulic capacity. This includes dense shrubs, grasses and noxious weeds. Vegetation removal activity is typically performed through mechanical means (mowing/pulling).

Underdrain System Check

Frequency: Periodically

With proper maintenance of the surface components of the facility, there should be a minimum amount of maintenance required on the underdrain system. Inspection ports or clean-outs may be used to determine if subsurface layers are retaining water.

Mosquito Treatment

Frequency: As needed

With the exception of a pre-treatment area, these areas are intended to drain and should not have areas of standing water which creates mosquito habitat. Any observed standing water or boggy conditions should be investigated and remediated as necessary.

Minor Maintenance Activities:

Sediment Removal

Frequency: As needed based on inspection, typically every 1-2 years.

Sediment removal is necessary to ensure proper function of the areas. Care should be taken when removing sediment to prevent damage to the grass and surrounding areas. Minor sediment removal can typically be addressed with shovels, rakes, and smaller equipment. Excessive amounts of sediment are an indication of upstream erosion or lack of adequate BMP's during construction activities. Causes for contributions of excess sediment should be investigated and addressed. Extreme care should be taken when utilizing motorized or heavy equipment to ensure damage to the underdrain system or porosity of the subsurface soils does not occur. Removed sediments do not meet the criteria of "hazardous waste" however, these sediments are contaminated with a wide array of organic and inorganic pollutants and must be handeled with care. Sediment should be carefully removed during dry weather to prevent adverse downstream impacts. Removed sediments should be dewatered and then transported by vehicle to a proper disposal site (ie. Landfill, etc.). If necessary, restabilize any bare areas.

Erosion Repair

Frequency: As needed based on inspection

Erosion can vary in magnitude from minor repairs to embankment ruts, energy dissipaters and rilling to major bullies in the embankments and spillways. The repair of eroded areas may require the use of excavators, earthmoving equipment, riprap and erosion control blankets. Extreme care should be taken when utilizing motorized or heavy equipment to ensure damage to the

underdrain system or subsurface layer's porosity does not occur. Major erosion is generally the result of excessive velocities caused by steep slopes. It may be necessary to make design improvements to the swale or buffer when erosion because a major maintenance item. All areas should be repaired in-kind and fully stabilized.

Vegetation Removal

Frequency: As necessary based on inspection

Weeds, shrubs and other unwanted vegetation that develops in the grass swale or buffer area may impede the flow and cause standing water or backflow problems. It is necessary to remove unwanted vegetation as soon as it appears and restore the correct grade. Revegetate with seed or sod.

Clearing Underdrains

Frequency: As necessary based on inspection

The area contains an underdrain system that allows treated runoff to infiltrate and exit the facility. These systems can develop blockages that result in a decrease in the hydraulic capacity and create standing water. Specialized equipment or qualified personnel may be required to clear debris from these structures.

Level Spreader

Frequency: As necessary based on inspection

Level spreaders that are no longer level, or have developed damaged areas of cracking or spalling, allow flows to concentrate in these depressed areas instead of being distributed over the length of the structure. Also, build-up of grasses along the edge of the spreader may create an uneven flow distribution. Rills, gullies and other erosion that develops downstream of level spreaders should be repaired and reseeded or sodded. Causes of erosion should be investigated and addressed.

Fertilization/Soil Amendment

Frequency: As necessary based on inspection

Grass buffers and swales rely on healthy, dense vegetation in order to function properly. Grasses that appear to be diseased, dying or unhealthy may require amendments. Fertilizers should be applied in the minimum amounts recommended by the manufacturer.

Vehicle Tracks

Frequency: As necessary based on inspection

Swales that are adjacent to roadway sections or driveways may be damaged by vehicle tracks. Rutted areas should be filled in and revegetated as soon as possible. Frequent problems associated with vehicle traffic such as around corners, may required a barrier or sign to avoid vehicular traffic within the grassed areas.

Major Maintenance Activities:

These typically involve: large quantities of pollutants/sediment/filter media/landscaping material removal, severe erosion involving; gullies, excessive soil displacement, settlement or holes, and structural repairs to damaged items. These maintenance activities should be performed as a frequency as needed based on inspections. Extreme care should be taken when utilizing motorized or heavy equipment to ensure damage to the underdrain system or subsoils porosity does not occur.

These activities may require an engineer design or jurisdictional approval. Consult appropriate authorities before proceeding with these activities.

Common Maintenance Items:

- Displaced/Settled rip-rap rip-rap that appears to have settled, has soil present between stones, or has shifted may be required maintenance for continued erosion prevention.
- Erosion/Rutting Erosion at the inflow is common and rutting sometimes occurs along pond banks, both situations require maintenance to prevent continued erosion.
- Sediment Accumulation Sediment often deposits immediately downstream of the inflow point and in the forebay. To prevent a loss in hydraulic performance, sediment must be removed in a timely manner. Routine removal can reduce the need for dredging of the entire facility.
- Outflow Clogging If after several dry days, the basin permanent water surface elevation is not below the invert of the low-flow discharge point in the outlet structure, than the outfall may be clogged. Removing clogging either upstream or downstream of the outfall should be done.
- Structural Damage This can occur anytime during the life of the facility. Typically, at inflow
 points it involves the flare end section becoming removed from the barrel. The outlet structure
 can crack, spall and settle. Steel trash racks and well screens are susceptible to damage. Outfall
 points may become blocked with trash or woody debris. This can lead to operational problems
 with the facility.
- Woody Growth/Weeds undesirable or heavy vegetation growing in or around the inflow or outflow points can effect performance and result in blockages. Tree roots can cause damage to structural components or embankments during flood events. Routinely mowing the facility will remove these plants when they start to grow.
- Petroleum/Chemical Sheen If sheens, odors, discolored soil or dead vegetation are observed in the micro-pools, this may indicate an illicit discharge is reaching the facility. If this is observed, contact the entity listed in this manual who is responsible for the long-term operation and maintenance of the site. Proper removal/mitigation of contaminated soils and water in the facility is necessary to minimize downstream impacts. Additionally, the source of the contamination should be identified and pre-cautions and procedures implemented to prevent future occurrences.
- Mosquitoes/Algae Treatment Nuisances created by stagnant water can result from improper maintenance and treatment of the forebay and deep pool. Chemical/mechanical treatment of the permanent pools may be necessary to reduce these impacts if they have the potential to effect adjacent residential areas.
- Trash Rack/Well Screen Clogged Floatable material that enter the facility will most likely make its way to the outlet structure. This material may be trapped against the trash rack or outlet grate. This material must be removed on a routing basis to ensure the outlet structure drains as designed.
- Burrowing Animals/Pests Burrowing rodents may cause damage to the embankments by reducing their structural operation during large storm events.

References

SWPPP Qualified Inspection Reports